# MUSICAL TEXT-SETTING AS EVIDENCE FOR SYLLABIFICATION 

 OF HIGHLY MORAIC STRUCTURES IN ENGLISH
## by

Sara Blalock Ng

A Senior Honors Thesis Submitted to the Faculty of
The University of Utah
In Partial Fulfillment of the Requirements for the
Honors Degree in Bachelor of Arts

## In

Linguistics

## Approved:

Dr. Abby Kaplan
Thesis Faculty Supervisor

Dr. Patricia Hanna
Chair, Department of Linguistics

Sylvia D. Torti, PhD
Dean, Honors College


#### Abstract

In the standard generative perspective, English is a mora-sensitive language, permitting syllables with one or two moras (or in some perspectives, strictly two). However, structures are readily available in the lexicon which seem to have three moras in a single syllable. Lavoie and Cohn 1999 argue that these structures are unstable because they violate the mora-counting condition of English, and this violation motivates speaker-dependent variability.

Feature instability engenders a skepticism for speakers' own intuition about the syllabification of these so-called unstable structures. Thus, an alternative approach is necessary, whereby linguistic representation may be inferred from observable behavior beyond speech or writing. Through an exploratory study on pitch of performed music, and an experimental study on musical text-setting, I find evidence for the use of musical features and behavior as indicators of linguistic representation. Notably, findings from both research designs lend support to the claim that highly moraic structures in English are unstable and exhibit a dichotomy of syllabification between individual speakers.


## Table of Contents

0 Abstract ..... i
1 Introduction ..... 1
2 Review of Relevant Literature ..... 2
2.1 The Syllable and the Mora ..... 2
2.2 Unstable Syllables ..... 3
2.3 Intuition, Behavior, and Representation ..... 5
2.4 The Curious Case of 'fire' ..... 5
2.5 Musical Evidence of Linguistic Representation ..... 6
2.5.1 Text-Setting as a Salient Musical Feature ..... 7
3 Exploratory Study in Musical Evidence of Syllabification ..... 8
3.1 Premise ..... 8
3.2 Research Design ..... 10
3.3 Procedure ..... 11
3.4 Results ..... 13
3.5 Discussion of Findings ..... 17
4 Text-Setting Experiment ..... 18
4.1 Premise ..... 18
4.2 Text-Setting Design ..... 21
4.3 Procedural Considerations ..... 23
4.4 Results ..... 26
4.5 Validity of Results ..... 33
4.5.1 Assertions ..... 33
4.5.2 Limitations ..... 34
5 Comparison of Methods ..... 34
6 Conclusion ..... 35
7 References ..... 37
8 Appendices ..... 39

## 1 Introduction

How many syllables are in the word 'fire'? How about 'style,' or 'time' or 'wheel' or 'conspire'? The interested reader may be surprised to learn that English speakers show a diverse set of reactions to these questions. To some, there is a clear-cut answer: it's ONE! (or, TWO!). Others may be unsure, or may have intuitions that seem to contradict their linguistic behavior. Others still may feel inclined to say, "I would be able to tell you if I had a clear definition of 'syllable.'" One clear commonality from these words is a shared set of features within the final rime of the word. These words contain highly sonorous rimes; they either contain diphthongs, sonorous consonants in their codas, or a combination of the two. If there is some linguistic phenomenon creating ambiguity for these words, it likely originates from this shared sonority. After all, the sonority of nuclei is what drives syllables to exist at all (Lass 1984).

Unfortunately, it appears that speaker intuition is an unreliable marker of syllabic representation in the language. It is therefore necessary to find alternative environments in which information about linguistic representation may be available. One such area is composed music. There are many reasons why one may choose to investigate music as a keeper of linguistic information, particularly information related to syllabification. First, music is metrical; it is naturally divided into beats, much in the way that a sentence may be metrically divided by syllables. Second, the lyrical nature of sung music allows for direct comparison between language (i.e. the lyrics), and musical features (the corresponding or surrounding notes). What's more, when it is composed by a single person, music can be representative of the cognitive tendencies of a single person, in the same way that speech samples are reflective of the cognitive structures of a single
speaker. For these reasons, music is a likely environment for observing the influence of linguistic representations.

In this paper, I suggest how music and musical behavior can be used as evidence of patterns of syllabification in English. In Section 2, I provide a summary of previous studies on this topic, paying particular attention to the ways in which music can answer phonologically-motivated questions. Section 3 describes an exploratory study relating performed musical pitch to syllabification of these types of words, and Section 4 describes the use of musical text-setting as an alternative approach to identifying syllabic representation. The relative merits of both studies and a qualitative comparison can be found in Section 5.

## 2 Review of Relevant Literature

### 2.1 The Syllable and Mora

Investigation in the syllabification patterns of English requires an understanding of the construction and behavior of syllables. The syllable is a word-internal feature which divides the phonological segments of an utterance into metrical beats. A syllable can be further divided into constituent parts: the onset, an initial consonant or consonant cluster, and the rime, consisting of a syllabic segment (the nucleus) and an optional final consonant or consonant cluster (the coda) (Lass 1984).

One salient feature of syllables is the mora. In general, the mora is the unit of syllabic 'weight' assigned to each segment in the rime of a syllable (Lass 1984). The constituent parts of a syllable become eligible to bear moras if they are contained in the rime (Hyman 1985). For example, the word 'car' [car] is dimoraic, as both the [a] and [ x ] have moras. Dimoraic syllables are also called heavy. The name 'Bri' [bri] has one
mora, assigned to the segment [i]. This syllable is light. Heavier segments like diphthongs and long vowels may be doubly weighted, e.g. the word 'day' [der] is dimoraic because the diphthong [er] is itself assigned two moras. The non-word [a:tf] would have three moras, two for [a:] and one for [t]]; trimoraic syllables of this type are called superheavy (Cohn 2003).

Moras are syllabic features which are both abstract and phonologically motivated (Lass 1984). What's more, they are language-specific. Hyman asserts that the "mora is claimed to be indispensable in prosodic phenomena of some languages but completely irrelevant in other languages" (1985, p. 81). If moras are a true cognitive feature, then some languages, like Japanese, display rule governance based on moraic assignment (Tsujimura 1996). In standard theory, English is said to accept no more than two moras per syllable. Some phonologists argue that English in fact requires dimoraic syllables (Cohn 2003). Other languages have no restrictions on the weight of syllables whatsoever.

### 2.2 Unstable Syllables

This description of moras across language is, however, insufficient. Lavoie and Cohn 1999 use this insufficiency to define what they refer to as sesquisyllables. These are word-internal structures which would be classified as single syllables by standard criterion such as ONSET, NOCODA, the Sonority Sequencing Generalization, etc. but which violate language-specific moraic rules. For example, one could place the diphthong [ er ] in the nucleus of a syllable in English, and it should be assigned 2 moras. If that same syllable contains a highly sonorant coda, like [1], Lavoie and Cohn argue that it is insufficient to say that the second mora is shared between the second constituent
vowel and the coda, as in Figure 1:


Figure 1
They would instead say that because [1] is so highly sonorous, it must have its own mora. The syllabification must be as shown in Figure 2.


Figure 2
But then the syllable would be superheavy, and English does not formally allow for superheavy syllables. The syllable thus becomes unstable. It can either remain an illformed monosyllable, or the coda can become syllabic, splitting the original syllable in two. It is argued that unstable syllables do not behave uniformly across language communities, so a word like 'grail' [g.eerl] which would be classified as unstable may be one syllable for some speakers and two syllables for others (Lavoie, Cohn 1999).
2.3 Intuition, Behavior, and Representation

In identifying how one may isolate how syllable structure is conceived and perceived, it is useful to differentiate between three aspects of language knowledge. First, linguistic intuition may refer to a speaker's explicit thoughts and judgments about language features. For example, a speaker's intuition about the number of syllables in a word would be how many syllables they say are in the word when asked by an observer.

Linguistic behavior refers to how linguistic features are manifested in performance, e.g. how syllable structure affects the acoustic properties observed in laboratory speech. (An analogous study on the distinction between intuition and behavior as they relate to the target structures of this study can be found in Rodriguez 2017). One of the most important distinctions of vocabulary is the difference between linguistic intuition and linguistic representation. Representation refers to the tacit cognitive mapping of linguistic structures in the mind of the language speaker. For example, a speaker's grammar may store the word 'mother' as disyllabic within some parameter space set by their language's grammar. This may (and as Lavoie and Cohn 1999 suggests, often does) contrast with how many syllables they think are in the word 'mother.' Because we are interested in whether existing phonological theory can accommodate so-called unstable syllable structures, we must predict the linguistic representation that speakers of English have for the target syllables.

### 2.4 The Curious Case of 'fire'

The idea for this study came from the observation that speakers are less confident about their syllabic intuitions for words like 'fire,' which would be considered unstable, than they are for syllables that obey moraic rules. If this is systematically true, then using
speaker intuition as a marker for underlying representation will not yield a satisfying correspondence. The mora violations seem to create (or at least further) disjunctions between intuition, behavior, and representation. Thus, if we wish to understand the linguistic representations of unstable syllables like 'fire' in the minds of language users, we should not consider intuition as a first choice. If we cannot trust the speaker to know their own representation, then the only evidence we can collect concerning these structures is in behavior. We will see in Section 2.5 how the notion of behavior can extend beyond language to music, offering us an alternative environment to study linguistic patterns.

### 2.5. Music as Evidence of Linguistic Representation

The relationship between music and language has been examined, with many arguing that musical forms and linguistic representation influence one another in measurable ways. These arguments can be subdivided into two categories. First, there are those who argue that the musical forms which artists deploy are either influenced by or dependent on the language origin of the composer. For instance, Schellenberg 2012 posits that speakers of tonal languages have in some way a reduced infinitude of melodic combinations based on the tonal progression of lyric. Language constraint on music may or may not even include music for which there are no lyrics (Temperley, Temperley 2011).

There are also people who believe that musical forms can interact with and strengthen or muddle linguistic judgments. In Bravi 2015, musical forms were used to alternatively amplify or mask the prominence of syllabic peaks in lines of text. This suggests that there may be a bidirectional interaction between musical and linguistic
forms; language can imply the use of musical forms, and the integration of language in music can influence linguistic perception.

As stress and intonation are linguistic features dependent on syllabification, it is fruitful to remark on the potential musical indicators of these features. In Dell and Halle 2015 and Sui 2013, metrical position is noted as a probable indicator of linguistic stress. Both these studies argue that stressed syllables in language should and do correspond to strong metrical positions when set to music. Intonation in speech is a literal change in the pitch of voice, and so it seems natural to argue, as Schellenberg 2012 does, that change in musical pitch of a set text should correspond to places in the line were intonation would be predicted to change. It can be observed that in some musical traditions, it is even common for peaks in musical pitch to correspond to strong metrical position.

### 2.5.1 Text-Setting as a Salient Musical Feature

While the most analogous type of music to spoken language is live musical performance, it may not be the only musical context from which linguistic ties can be drawn. If one accepts the syllable as an integral cognitive feature of grammar, then the syllable should be present in written forms of language as well. It is not difficult to see this in action. For example, metrical poetry can be read and appreciated without being spoken. And one would expect that musical written forms would behave similarly in preserving metrical behavior.

One possible counterargument to this parallelism is found in the experiment described in Palmer and Kelly 1992. In their study, singers were asked to sing melodies based on written music, where language prosody either matched or went against musical emphasis. Subjects did show variability in note duration between identical melodies
based on the changes in prosody alignment. However, the discrepancy due to misalignment only occurred because singers were performing melodies which they themselves did not compose. If it is assumed, as Palmer and Kelly suggest, that prosody is a linguistic feature which corresponds to musical phrasal position, it may be presumed that such misalignments would not occur and the prosodic judgments of the musician would align with musical phrasing. Indeed, this parallelism is observed in the folk song set analyzed in Rodriguez-Vasquez 2010. The argument for text-setting will be resumed in Section 4.

## 3 Exploratory Study in Musical Evidence of Syllabification

### 3.1 Premise

Based on this evidence, it seems plausible that musical performance is a reliable indicator of linguistic intuitions and thus behavior. My research study in collaboration with Abby Kaplan, Jenica Jessen, and Joselyn Rodriguez aimed to exploit this as an exploratory means of estimating linguistic behavior at times when, as previously noted, speakers' intuitions about syllable behavior appear unclear or seem to undermine their linguistic performance. We posited that should distributions of selected musical features be comparable to the distributions of syllables as described in Lavoie and Cohn 1999, then those features could more strongly be suggested as indicators of syllabification. That is, if we were to find that some musical features displayed a division of speakers -those who poly-syllabify superheavy syllables and those who do not -- it would suggest that feature would be an accurate marker of linguistic behavior.

The selection of a salient musical feature was of primary concern to our study. Based on the scope of the study, features were constrained to those aspects of music
which could be analyzed in existing musical performances. This eliminates features found in written music from consideration. The feature must also be related to musical text-setting. Of the remaining features, musical pitch was selected as the feature for examination. This choice was based on the Schellenberg 2012 study, where pitch was selected as an indicator of intonation, a syllabic feature. As stress is a phonological feature related to syllable structure (Lass 1984), it seemed equally plausible that musical pitch could also be used as an indicator of syllable count. Unlike the Schellenberg study, however, it was determined that the most relevant aspect of pitch would be the number of pitches assigned to a given word in the text, and not the relative frequencies of the pitches assigned to the word. It was assumed that any clear change in pitch could plausibly indicate syllable boundary. We therefore anticipated that the pitch count of a given word in sung musical performance would indicate the number of syllables a performer would assign in representation to the word in spoken language, regardless of relative pitch.

We also needed to identify target rimes for consideration. In accordance with the suggestions of Lavoie and Cohn 1999, the target rimes were diphthongs followed by a liquid. We chose [air] and [ail] as these targets. To obtain a set of control rimes, we selected rimes which were combinations of the component vowels of the target rime ([a] and [i]), the target codas ([I] and [1]), and the pair consisting of the target diphthong and the nasals [m] and [n]. This yielded the following set of rimes (Table 1):

| Table 1: Target Rimes |  |  |  |
| :---: | :---: | :---: | :---: |
| ai. | a.I | i. | ain |
| ail | al | il | aim |

Our purpose was thus to analyze a body of existing data to see whether the
number of pitches associated to a target rime could be viewed as an indicator of underlying linguistic representation.

### 3.2 Research Design

Because our primary goal was to isolate the behavior of individual speakers, we decided that the body of music we included in the study should be restricted to works where the principal singer, lyricist, and composer were the same person. Based on this criterion, the pool of potential artists for consideration was limited to American singersongwriters. Within this pool, twelve singer-songwriters were selected for analysis, each of whom had a large body of work and were well-known for writing their own music.

There were non-trivial limitations to the selection of these singer-songwriters. First, the small sample size makes it difficult to assert any meaningful comparisons based on demographic markers. For example, while it appeared impressionistically that artist age may bear influence on syllabification patterns, demographically-selected subgroups would be too small to be generalized in any meaningful way. The data may also suffer from a lack of diversity in the artist pool; most artists were male and white, with two females and one male of color in the artist sample. Table 2 gives the names of the selected artists, as well as the two- or three-letter abbreviations by which they are referred in subsequent figures.

| Table 2: Sample Set of Artists |  |  |  |
| :--- | :---: | :---: | :--- |
| Artist | Abbreviation | Birth Year | Birthplace |
| Beck Hansen | BH | 1970 | Los Angeles, CA |
| Ben Folds | BSF | 1966 | Winston-Salem, NC |
| Billy Joel | WMJ | 1949 | Hicksville, NY |
| Bob Dylan | BAD | 1941 | Duluth, MN |
| Bruce Springsteen | BJS | 1949 | Long Branch, NJ |
| Conor Oberst | CO | 1980 | Omaha, NE |
| Ingrid Michaelson | IEM | 1979 | New York City, NY |
| James Taylor | JVT | 1948 | Chapel Hill, NC |
| John Mayer | JCM | 1977 | Bridgeport, CT |
| Ryan Tedder | RTD | 1979 | Tulsa, OK |
| Stevie Wonder | SHM | 1950 | Saginaw, MI |
| Suzanne Vega | SNV | 1959 | Santa Monica, CA |

### 3.3 Procedure

First, the works of each artist were identified, and works for which there were multiple attributed composers/writers were discarded. Lyrics for all remaining works were obtained through popular internet lyric sites, and words were highlighted if they met the following criterion:

1. the word ended in one of the target rime types (this was checked by cross-reference with the CMU pronouncing dictionary (Weide 2005))
2. the word did not end in any additional affixes (e.g. NOT 'fires')
3. the target rime was not polymorphemic (e.g. NOT 'he'll' or 'higher')
4. the word was in English

This highlighted set became the set of all tokens to be analyzed. Coding of token data
was completed in three rounds, with each of the four researchers being primarily responsible for one artist's work each round.

For each artist, and for each song in that artist's body of work, the highlighted target words were marked for the number of pitches. The criterion for pitch count in ambiguous cases is summarized in Table 3:

| Table 3: Criterion for Pitch Count |  |  |
| :--- | :--- | :--- |
| Scenario | Example | Determination |
| $>2$ distinct target <br> pitches with <br> movement | Artist slides from note to <br> note, but the target pitches <br> are clear. | Code as number of targets |
| 1 distinct target <br> pitch with <br> movement | Artists hits a target pitch, <br> but then slides off with no <br> discernable lower target. | Code as 1 pitch |
| Scooping pitch prior <br> to 'main' note | Artist sings with 'pop' <br> style and does not initiate <br> and sustain on the same <br> note. | Code as 2 pitches IF the initial <br> pitch is clear. Else, code as 1 <br> pitch. Err towards 1 pitch in <br> uncertain cases. |
| 1 pitch, targeted <br> twice | Artist hits a pitch, and then <br> rearticulates that same <br> pitch without intervening <br> pitches. | Code as 1 pitch |
| target is pitched, but <br> not in key | Artist is somewhere <br> between singing and <br> talking, nearer to talking. | Discard token |

Each token was coded twice, once by the researcher assigned to that artist and once by a random second researcher. The coded pitch count was compared for the two researchers, and if there was a discrepancy, the token was heard by all four researchers and coded again after open discussion. Within the data set, there was initial discrepancy for approximately $20 \%$ of the coded tokens. The work of one artist was considered complete
when their entire body of work or 500 tokens had been coded twice. In total, this amounted to 6498 tokens collected from the bodies of work (an average of 541 tokens per artist).

### 3.4 Results

Figures 3-14 show the mean number of pitches each artist assigned to the target and control rimes. These numbers are corrected in two ways. First, to account for singers with highly melismatic singing/composition styles, the number of pitches for any given token was capped at 4. Thus, if a singer used 7 pitches to sing the world "all," this was encoded as 4 pitches. The data was also corrected for duplication. There was a concern that if an artist repeated some anomalous line many times, it would skew the data against their actual behavior. Duplication occurred often within the data set, due to the strophic nature of the majority of the songs coded. For example, in the song "All We Ever Do Is Say Goodbye" by John Mayer, the line "all we ever do is say goodbye" is repeated 14 times throughout the song, without significant variation. For duplicate sets like this, i.e. words that were sung in the exact same line and phrase setting, one of the tokens was randomly selected to serve as representative of the set.


Figure 3
Figure 4


Figure 5


Figure 7


Figure 9


Figure 6


Figure 8
Beck Hansen (BH)


Figure 10


Figure 11


Figure 13

Figure 12


Figure 14
We see a division within the set of artists: for some there does seem to be a preference for multiple pitches on [air] (and to a lesser extent, [ail]) words, which for others there is no visible difference between the number of pitches assigned to each rime type. Based on our model, this suggests that artists for whom there is a difference based on rime type are likely to have polysyllabic forms in their linguistic representation. Artists for whom there is no difference should have a monosyllabic representation. This appears to be in accordance with the conclusion of Lavoie \& Cohn 1999, that unstable moraic structures will not have uniform distributions across language users.

In fact, for five artists, Ben Folds, John Mayer, Conor Oberst, Billy Joel and Suzanne Vega, there was a statistically significant difference in the likelihood that [ai.] would be multi-pitched (and therefore polysyllabic) compared to the baseline ( $\alpha=0.05$ ). For Beck Hansen, there was a statistically significant difference in the likelihood that [ail] would be multi-pitched, with the same confidence. This is summarized in Figure 15, which presents an odds ratio of the rime types [air] and [ail] relative to the control (at baseline $=0$ ).


Figure 15
Figure 16 compares the same groups of tokens, but the $y$-axis on this figure represents the average additional number of pitches assigned to [ai.I] and [ail] relative to the baseline.

That these figures are similar is encouraging to the validity of the statistical significance. If, for example, the estimates in Figure 15 had been much closer the baseline than those in Figure 16, it may suggest that there is some erroneous influence of melismatic song styles on the data. However, the comparability of these two figures supports the claim that these distributions of pitches are an accurate measure of the musical behavior, and a reasonable indicator of the underlying syllabic representation.

Number of pitches


Figure 16

### 3.5 Discussion of Findings

There are several conclusions that can be made based on this data. First, there is a statistically significant bifurcation of artists, those for whom constructions of diphthong + liquid rimes are monosyllabic and those for whom they are polysyllabic. This supports the previous claim that syllabification of unstable structures is speaker-dependent. Since English only allows for dimoraic structures, and these sesquisyllables may be viewed as superheavy, the candidate syllables may be split to obey the moraic constraint (Lavoie, Cohn 1999).

Within the set of rime types following this form, there is a sequence impressionistically based on relative aggregate sonority of the contained segments, of which rimes types were likely to undergo poly-syllabification. When artists showed evidence of poly-syllabification, it was preferred that the rime undergoing syllable change be more highly sonorous. Thus, among the target times [air] was more commonly systematically syllabified ( 5 artists) than [ail] (1 artist). A similar observation can be made within the control group, whereby rimes with more sonorant constituents have a
higher mean pitch. For example, rimes containing diphthongs have higher mean pitch counts than rimes with monophthongs and more-sonorant codas.

In sum, concordance between the observed musical behavior and our assumptions of the possible syllabification of the target rimes leads us to conclude that this exploratory study shows a speaker-dependent alternation of syllabification of superheavy syllables in English. In addition, we are in the view that based on accordance of our findings with the assumptions, recorded musical pitch is a reasonable estimate of an individual speaker's underlying syllabic representation.

## 4 Text-Setting Experiment

### 4.1 Premise

In developing the analysis methods previously discussed, several issues arose that suggested a different methodology may be preferable. For example, using pitch as a musical indicator of syllabification requires that data recorders operate using an arbitrary set of parameters for what is considered a complete target pitch and what is not. As discussed in Section 3.3, tokens collected by pitch count were defined by such constraints as clear target pitches, containment of the target pitch in the song's key, and contrastive repetition; i.e., tokens were 'bad' if the pitches were unclear, outside of the melody space, or identical and adjacent. However, this constraint system was still vulnerable. Since pitch is not a discrete operation, qualitative judgments are to some degree necessary in determining pitch count of any given token. This led to discrepancies between the individual researchers' judgments. Even with multiple researchers coding each token, there was still an error created in the compromise of judgments.

It was therefore in our interest to investigate whether there exist other musical
features that could be used as indicators of syllabification. We were especially interested in musical features where dispute over the numeric value would be less likely, i.e., a feature with discrete, countable values. One such feature is the number of written musical notes assigned during composition to a given syllable. There are several plausible advantages to the use of written music as an indicator of syllabification. First, provided that notation standards are clearly defined, there is little foreseen ambiguity as to how many notes are assigned to a given word. (In fact, possible anticipated ambiguities, such as 'tied' notes or 'stacked' metrical patterns, were not observed in testing.) As composition theory often deals in descriptions of syllable, count of written notes is seemingly as plausible as count of performed pitches as an indicator of syllabification. Finally, by not requiring recorded works of music, analysis of written music offers a logistical advantage to the researcher.

It is also worth remarking that in some respects, count of written notes may be a better indicator of syllabification than count of performed pitches. In Schellenberg 2012, it is suggested that musical pitch can be used as an indicator of spoken intonation. Dell and Halle 2005 additionally argue that linguistic stress corresponds with phrasal stress (and thus pitch in many traditions). If these assertions are taken seriously, and musical pitch indicates inter-syllabic features, then there must also exist criticism for the use of musical pitch as indicative of the syllabification itself: it is therefore necessary to consider more carefully how music can serve as linguistic evidence. As Temperley and Temperley 2011 posited, the language traditions of the composer may influence which musical forms are used. It is not clear in their discussion how linguistic features are mapped onto music.

One possible solution is to consider a linear injective map from linguistic representations to musical performance, where each relevant linguistic feature corresponds to one (and only one) aspect of musical behavior. In this system, an aspect like pitch must be assigned only to one linguistic feature, e.g. stress. Since stress is an inter-syllabic feature, pitch must then be a sub-feature of the macro musical aspect corresponding to word boundary, musical phrase, for example. Similarly, inter-syllabic features must correspond to an "inferior" musical feature. If this solution is accepted, then pitch would not be a candidate for syllabification, based on the previous literature. While it seems plausible that there would exist a correlation between the scope of a linguistic feature and the scope of a musical one, accepting this description introduces a contradiction between Dell and Halle 2005 and Schellenberg 2012, which both use alignment of syllables to written notes as evidence for patterns of different linguistic features.

Another possible solution is to say that the map from language to music and vice versa is not bijective. In fact, musical features may indicate multiple linguistic features, and a linguistic feature may have evidence in multiple aspects of music. This view allows not only validates our choice of musical feature in the exploratory study, but also allows for a mapping between written note (as used in Temperley and Temperley 2011 to indicate stress) and syllabification.

### 4.2 Text-Setting Design

Based on the discussed issues in the exploratory study, and the advantages of written form discussed in Section 2.5.1, it was determined that it would be propitious to design a secondary study where both written samples of musical behavior and some
record of linguistic intuitions were available for individual speakers. I therefore endeavored to design a study where I could compare participants' musical alignment of target words to written notes with their explicit judgments about syllabification of the target structures.

While the use of existing strophic lines from the existing data was considered as the target lyrics of this experiment, this idea was ultimately rejected for two reasons. First, using existing lyrics would have introduced a potential that the participants would recognize the original lyric, and thus be influenced by the known melody. As the compositions needed to reflect the linguistic representation of a single songwriter, this was an unacceptable error. The second rationale in using previously non-existent lyrics was logistical. Recruitment and data collection for the study were in conjunction with the data collection of Rodriguez 2017, which required participants to make acoustic recordings of $\approx 40$ words and then make explicit judgments about the syllable count of those words (comparing the acoustical behavior of speakers with their linguistic intuitions). Combined with the amount of time necessary to compose several short melodies, the study faced the problem of participant fatigue. By creating original lyrics for composition, it was possible to fit several more target rimes per phrase than could be found in the existing music library. Thus, a sufficient number of target rimes could be collected in fewer melodies, saving the participant time and energy. Creating original lyrics also allowed us to stipulate that the set of phrases be of reasonably variable lengths. The use of created lines follows the precedent of Sui 2013. However, this design introduces similar problems as were observed in Palmer and Kelly 1992. Eleven total phrases were composed for use in the study. They are provided in Table 4:

Table 4: Lyrical Phrases for Use in Text-Setting Study
"all our dreams are done"
"take time to live out all you deserve"
"stoke the fire, I feel fine"
"dear little paper doll"
"while you conspire"
"you tire of being here"
"climb while you fall" "require our hearts to heal" "hire me to replace the car tire" "fan the fire and fire the fanner" "catch me on the line, new telephone wire now"

Figure 17 shows the kind and frequency of target rimes found in the this set of phrases.
Twenty-seven tokens were included, with roughly one half of tokens being targets [air] and [ail] and one half being a representative set of control rime types.


Figure 17
These rime types were distributed in the following list of words (Table 5):

| Table 5: Target words |  |  |  |
| :--- | :--- | :--- | :--- |
| all | dear | fire | our |
| are | doll | heal | require |
| car | fall | here | time |
| climb | feel | hire | tire |
| conspire | fine | line | while |
|  |  |  | wire |

Unfortunately, due to a software error, incomplete data was collected for the
token 'car.' Therefore, all 'car' tokens were excluded from final analysis. This word appeared once per subject in the data set.

Based on the exploratory study in Section 3, it was assumed that the rimes [air] and [ail] would be the most likely to show indicators of poly-syllabification, and so it was determined that the number of these times these rimes appeared in the musical lines should be comparable to the aggregate size of any segment-sharing pair of control rimes. For each of the words, participants were also asked explicitly how many syllables they thought were in the words in the target set.

### 4.3 Procedural Considerations

Data was collected from a sample of 20 native English speakers, from the student body of the University of Utah School of Music and the community at large. Participants were recruited through the solicitation of Music Department faculty and through fliers posted on the University of Utah campus and by word of mouth. Participants were offered $\$ 10$ in compensation, which was to be distributed regardless of completion (no responses were incomplete). This was made possible by funding assistance from the Office for Undergraduate Research at the University of Utah. Each participant was asked to meet researchers in a reasonably quiet and private space to complete an interactive electronic survey on the researcher's laptop computer, and most meetings occurred in private library study rooms at the University of Utah Marriott Library or at Salt Lake County libraries. Appendix A contains the screenshots for one subject in this survey. Source code for the survey is available in Appendix B.

First, subjects read a series of instructions about how to use the drag-and-drop composition screen to create original melodies. On the following screens, participants
saw a blank musical staff, a bank of notes and miscellaneous notational markers, a target phrase, and a lyric bank consisting of the words in the target phrase. In order to reduce temporal fatigue and elicit natural judgments, participants were asked to spend no more than five minutes composing a melody for each phrase. A small piano keyboard was provided for participants to use if they so desired.

During the compositional activity, a significant problem was noted that in standard Western musical notation, words that span multiple notes are often split with a hyphen at some proposed syllable boundary. There was concern that this notation style may overtly encourage participants to assign target words to a single pitch, since they have no clear boundary at which to hyphenate. For example, a participant assigning pitches to the lyric 'fire' may choose to assign only one pitch because their compositional training would tell them that a syllable must have a vowel, when in fact their linguistic representation may assign 'fire' multiple syllables. To correct for this, participants were prevented from splitting words into smaller segments, and were instead asked to place lyrics underneath the first note to which they corresponded in cases where the lyric spanned multiple pitches.

After the participant had created a melody for each of the target phrases (presented in a random order), they were given the option of taking a break. This was again to reduce possible fatigue. After their break, participants were given a series of words to record. This included only the $\approx 40$ productions required for Rodriguez 2017. During this section, participants read the word to record at the top of the screen, and pressed a button on screen to record their sample. Recordings were defaulted to 3 seconds in length, and participants had the option to re-record any word they chose (this
rarely occurred). Only the last recording of each word was kept. Recordings were collected using a Rosetta Stone ${ }^{\circledR}$ Headset (Microphone frequency response: $20-20 \mathrm{kHz}$ ).

Once they finished the recordings, participants were again prompted to take a break if they wanted to. Then, they were given the following instruction for the explicit judgment of syllables:
"In the next activity, you will see a word in English at the top of the screen. In the text box, type the number of syllables you think are in the word, then hit 'Enter' on the computer keyboard. You will not be able to change your answers."

No definitions were given of what a syllable was or should be, and participants were not offered any additional advice. This was, of course, dependent on the participants' knowledge of the concept of syllable. Interestingly, there were no complaints or voiced concerns about this problem in the exit questionnaire. Because the set of words to be judged needed to include both the target words from the text-setting activity and the acoustic recordings, each participant made $\approx 60$ judgments (with possible repetition). After all judgments were completed, participants were directed without break to a sevenquestion questionnaire about their language background and musical experience.

Answers to these questionnaires can be found in Appendix C.
For each of the activities, except the demographic questionnaire, the order of questions/activities were randomized. However, the order of the tasks themselves (composition, acoustic recording, judgments, and questionnaire) remained static. The static order of the first two activities was justified for convenience of interface design. The third activity, syllabic judgments, necessarily followed the first two activities, as being asked about the syllable feature may have primed participants to respond in an unnatural way otherwise.

Table 6 shows a typical timeline for subjects completing each activity. Most participants finished the activity in about an hour. The fastest participant completed the survey in approximately 30 minutes, and the slowest participants finished in approximately 1 hour 15 minutes.

| Table 6: Typical Completion Timeline |  |  |
| :--- | :---: | :---: |
| Activity | Time | Running Time |
| First set of instructions | 1 min | 1 min |
| Text-setting activity | 40 min | 41 min |
| Break/second set of <br> instructions | 1 min | 42 min |
| Recording speech | 3 min | 45 min |
| Break/third set of <br> instructions | 1 min | 46 min |
| Syllable judgments | 6 min | 52 min |
| Final instruction | 1 min | 53 min |
| Questionnaire | 2 min | 55 min |

### 4.4 Results

For the purpose of analysis, each target from the composition and explicit judgment sections of the experiment were coded for subject number, word, rime type, and number of notes or number of syllables respectively. Two of the target words, 'require' and "conspire," had a leading syllable before the target rime. For occurrences of these words, 1 was subtracted from each corresponding value to account for the leading syllable. The entire set amounted to 540 compositional tokens, 27 per participant.

The raw data as described for both the text-setting and the explicit judgments can be found in Appendix D. In sum, 1019 tokens were recorded from the sample, an average of 50.95 tokens per participant. This variation between participants was due to the possible repetition introduced during the explicit syllable judgments. For example, if
a subject recorded the word 'while,' then they would be asked to judge the word 'while' at least twice. If a subject did not record themselves speaking the word 'while,' they would only judge its syllable count one time.

One of the vital purposes of this study was to see if different musical features showed the same distributions of syllabification as in the exploratory study. The distribution of rime types for each participant in the text-setting study are seen in Figures 18-37:


Figure 18


Figure 20


Figure 19


Figure 21


Figure 22


Figure 24


Figure 26


Figure 23


Figure 25


Figure 27


Figure 28


Figure 30


Figure 32


Figure 29


Figure 31


Figure 33


Figure 34

Figure 36


syllabification.
One interesting phenomenon concerning phrase structure was observed during the text-setting portion of the experiment. In the exploratory study, it was remarked that in certain circumstances, the syllabification of the target word seemed to be confirmed by its placement relative to polymorphemic words (e.g. if 'fire' was rhymed with 'higher' at the end of strophic lines). A similar pattern was observed in the text-setting for the phrase "fan the fire and fire the fanner." It seemed that the structure of the conjunction influenced the syllabification of these two 'fires.' In the first half of the phrase, 'fire' was treated in parallel with 'fan,' and was thus commonly monosyllabic. In the second half, 'fire' was contrasted with 'fanner,' and was more often polysyllabic. One such production is shown in Figure 38. Although this does not support the claim that syllabification of unstable rimes is speaker-dependent, it does offer evidence of the instability itself; one would expect that a stable syllable would not be at the mercy of phrase structure.


Figure 38: Phrase-Dependent Syllabification (SUBJECT 0056)
Another of the rationales for an experiment of this design style was the ability to
compare musical behavior to linguistic intuition. To do this, a second reading of the data was implemented. For each subject, the number of written notes assigned to each target word was coded as a compositional judgment. The elicited number of syllables for the targets during the syllable judgment activity was coded as an explicit judgment. In cases of multiplicity, i.e. a word (like 'are') appearing multiple times in the composition, or the subject being asked to judge the same word multiple times, the following procedure was followed:

- if possible, code the arithmetic mode of the values
- if there exist two or more modes for the data, code the arithmetic mean Thus, for each subject, for each word, there were two saved values: a composition "average" and a judgment "average." To compare the assumed syllable count from the text-setting to the intuitive syllable count of the subjects for each word, a percentage was calculated of the number of words for which the speaker's musical data and explicit judgments elicited the same response. This is summarized in Table 7:

| Table 7: Concordance of Text- <br> Setting and Explicit Judgment |  |
| :--- | :--- |
| Subject \# | Concordance |
| 0056 | $88.8889 \%$ |
| 0071 | $72.2222 \%$ |
| 0197 | $94.7368 \%$ |
| 0221 | $94.7368 \%$ |
| 0227 | $68.75 \%$ |
| 0290 | $88.8889 \%$ |
| 0370 | $77.7778 \%$ |
| 0594 | $94.4444 \%$ |
| 1609 | $84.2105 \%$ |


| 3714 | $70.0 \%$ |
| :--- | :--- |
| 3751 | $82.3529 \%$ |
| 3937 | $78.9474 \%$ |
| 4476 | $77.7778 \%$ |
| 4605 | $66.6667 \%$ |
| 4688 | $72.2222 \%$ |
| 5531 | $66.6667 \%$ |
| 5991 | $44.4444 \%$ |
| 6320 | $94.4444 \%$ |
| 7723 | $72.2222 \%$ |
| 8380 | $64.7059 \%$ |

Relatively high concordance rates are encouraging, in that they offer hope that perhaps intuition is not such a bad indicator when it comes to sesquisyllables. However, the lower bound of concordance ( $44.44 \%$ ) still speaks to the value of alternative venues of data collection such as music.

### 4.5 Validity of Results

### 4.5.1 Assertions

Several claims were necessarily assumed for the purposes of this experiment. First, it was assumed that the target words were all pronounced in the same way, e.g. all speakers would always pronounce 'fine' as [fain]. While this could be checked in the case of performed music (in fact, the interested reader can find an alternative analysis of the data from Section 3 in Jessen 2017, where 'while' is allowed multiple pronunciations), in the text-setting experiment pronunciation information is unavailable. Indeed, the fact that speakers were asked to record a set of isolated words, some potentially being target times, may have primed them to make syllable judgments based on how they would pronounce the words in isolation. For example, a target like 'our,' which is commonly pronounced [ax] in continuous speech, is more likely to be pronounced [avi] in isolation. This rime is not present in our data set in any incarnation.

If it were, the presence of a diphthong and a sonorant coda would surely make it more likely to be a target rime, and not a control (as it is claimed 'our' is).

We have also assumed positional independence. That is, the placement of a target word within a line of text is only anecdotally important. But Dell and Halle 2005 posit that musical phrasing is a linguistic marker. The "fan the fire" example from the data speaks to this. However, the assumption that syllable is causally phrase-dependent
invalidates the discussion in Section 4.1 about hierarchical mapping.

### 4.5.2 Limitations

As with the exploratory study, the scope of these findings is somewhat limited. While there is variation between the set of speakers in the sample, the lack of very strong statistical significance, coupled with a small sample size, means any conclusions difficult to generalize. Unfortunately, it is foreseen that any study of similar design would also be subject to such limitations, as the text-setting task takes considerable time and introduces ample opportunity for subject fatigue if too many tokens are attempted to be collected.

## 5 Comparison of Methods

If music is to be taken seriously as a means of examining linguistic representation, it is natural to ask what about music is most readily and accurately testable. This sections presents the advantages and disadvantages to the two design types outlined in this paper, and offers some recommendations for improvement.

One of the logistical advantages to using pre-recorded music is that a large body of samples is available to use. This set of samples is also acoustic, and so analyses based on sound patterns and timing are more easily uncovered. The subtlety involved in using target pitches as a syllabic indicator allows the researcher to work within shades of grey; pitch is not a discrete feature music, but continuous, and thus lends itself toward nonbinary generalizations. The use of recorded music also offers the advantage of temporal references, as noted in Bravi 2015. One can not only assign relative timings to recorded music, but measure temporal distances between salient musical features.

However, there are disadvantageous weaknesses where a study of this design simply cannot compete with subject testing. The most obvious difference between the
exploratory study and the text-setting activity was the ability to ask questions of the textsetting subjects; it's not as if John Mayer or Bob Dylan are going to answer respond to emails about linguistics, but a college student in the lab will happily answer any questions as long as they are being given payment. The text-setting design thus allows the researcher to directly compare musical behavior with linguistic intuitions.

While it was originally assumed during the research design process that using counted notes instead of pitch as the salient feature because it was a binary trait, in practice this did not seem to be any great advantage. Even in written music, there were still lines with ambiguous structure, when notes didn't line up well with any of the lyrics, for example. Still, a remaining advantage to text-setting is that the researcher need not be reliant on whether there are enough songs containing whatever target word or phrase in which they are interested.

Both methods shared a set of unavoidable problems as well. In either study, you are likely to see unnatural speech patterns, whether it be because of performance standards in the recording studio or because participants talk funny when you pass a microphone their way, it is difficult to know whether public behavior (especially in music) is representative of natural speech.

## 6 Conclusion

At the close of this discussion, we many definitively answer: How many syllables are in the word 'fire'? I say with all confidence afforded me as an undergraduate researcher: one or two!

However, there are secondary questions which have much more interesting conclusions. For example, we have seen strong evidence that there are separate groups of

English speakers, those who mono-syllabify so-called sesquisyllables and those who tend toward poly-syllabification. In addition, sesquisyllables as a set can impressionistically show a correlation between sonority and syllable count.

The validity of these results, of course, rests on the assumption that musical behavior is in fact an indicator of linguistic representation. The agreement between the conclusions of examined literature, the results of the exploratory study, and the findings of the text-setting experiment support claims based on this assumption. The observed concordance between these three variables also supports future use of musical features to identify salient linguistic phenomena.

In sum, the highly moraic and therefore unstable nature of sesquisyllables causes English speakers to have unreliable intuitions about their syllabification, and it is therefore necessary to examine behavior outside of isolated speech to ascertain their cognitive representation of syllabification. There is a theoretical basis for the supposition that syllabification of highly moraic structures is speaker-dependent. Previous literature has suggested music as a behavior influenced by linguistic rules. Both the exploratory study in pitch count of performed music and the text-setting activity suggest music can indeed indicate linguistic representation, in particular syllabification.

## References

Bravi, P. (2015). Sung syllables: structure and boundaries of the metrical unit in sung verse. The Notion of Syllable Across History, Theories and Analysis, 436-452.

Cohn, A. C. (2003). Phonological structure and phonetic duration: The role of the mora. Working Papers of the Cornell Phonetics Laboratory, 15, 69-100.

Dell, F., \& Halle, J. (2005). Comparing musical textsetting in French and in English songs. Typology of Poetic Forms.

Hyman, L. (1985). A theory of phonological weight. Foris, Dordrecht.
Jessen, J. (2017). Musical evidence for patterns of syllabification of highly moraic structures in English (Unpublished paper). University of Utah.

Lass, R. (1984). Phonology: An introduction to basic concepts. Cambridge University Press.

Lavoie, L., \& Cohn, A. (1999): "Sesquisyllables of English: the structure of vowel-liquid syllables", In ICPhS-14, 109-112.

Palmer, C., \& Kelly, M. H. (1992). Linguistic prosody and musical meter in song. Journal of memory and language, 31(4), 525-542.

Rodriguez, J. (2017). (Working paper). University of Utah.
Rodríguez-Vázquez, R. (2010). Text-setting constraints: A comparative perspective. Australian Journal of Linguistics, 30(1), 19-34.

Schellenberg, M. (2012). Does language determine music in tone languages? Ethnomusicology, 56(2), 266-278.

Sui, Y. (2013). Phonological and phonetic evidence for trochaic metrical structure in Standard Mandarin Chinese (Unpublished doctoral dissertation). University of

Pennsylvania.
Temperley, N., \& Temperley, D. (2011). Music-language correlations and the "scotch snap." Music Perception: An Interdisciplinary Journal, 29(1), 51-63.

Tsujimura, N., 1996. An introduction to Japanese linguistics. Blackwell, Oxford.
Weide, R. (2005). The Carnegie Mellon pronouncing dictionary [cmudict. 0.6].

Appendix A: Selected Images of Text-Setting Survey
The following represents the complete text-setting productions of SUBJECT 4688.





## Appendix B: Source Code for Text-Setting Survey

## File: Research_Proj

```
from tkinter import *
from instructions_list import *
import textwrap
import gen_sub_nums
import pyaudio
import wave
import os
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 2
RATE = 44100
RECORD_SECONDS = 2
```

class App (Frame):

```
    def __init__(self, master=None, *pargs):
    canvas_width = 1225
    canvas_height = 500
    Frame.__init__(self, master, *pargs)
    self.master.title("Music and Language Research Activity")
    self.master.minsize(1230, 665)
    self.grid(row=0)
    self.instruction = Label(text=first,
                                    wraplength=1230,
                    bg="white")
    self.instruction.grid(row=0, column=0,
                            columnspan=2, padx=30, pady=15)
    self.master.configure(bg="white")
    self.counter = 0
    self.record_count = 0
    self.remaining = 0
    self.p = 0
    self.stream = 0
    self.subject_number = gen_sub_nums.generate_subject_number()
    self.log fil\overline{e}}\mathrm{ name = str('self.-subject numbe}\overline{r}) 
'_questionnare.txt'
    self.judgment_file = str(self.subject_number) + 'judgement.txt'
    self.continue_button = Button(
                text="I understand, continue.",
                bg="springgreen")
    self.continue_button.grid(row=2, column=1)
    self.continue_button.bind('<Button-1>,' self.cont)
    self.back_button = Button(text="Go back.", bg="tomato")
    self.back_button.bind('<Button-1>,' self.back)
    self.directory = ("C:\\Users\\Sara\\Dropbox\\fire_syllables\\""
                            "experiment\\SUBJECT " + self.sübject_number)
        os.makedirs(self.directory)
```

```
    # the composing canvas
    self.canvas = Canvas(width=canvas_width, height=canvas_height,
                                    bg='white')
    # types of movement possible
    self.canvas.tag_bind("note", "<ButtonPress-1>",
self.on_note_press)
    self.canvas.tag_bind("note", "<ButtonRelease-1>",
self.on_note_release)
    self.canvas.tag_bind("note", "<B1-Motion>",
self.on_note_motion)
    self.canvas.tag_bind("lyric", "<ButtonPress-1>",
self.on_lyric_press)
    self.canvas.tag_bind(
            "lyric",
            "<ButtonRelease-1>",
            self.on_lyric_release)
    self.canvas-tag_bind("lyric", "<B1-Motion>",
self.on_note_motion)
    self.canvas.tag_bind("time_sig", "<Key-Return>",
                                    self.change_time_signature)
    # things that can be dragged
    self.canvas.whole = PhotoImage(file="whole.png")
    self.canvas.half = PhotoImage(file="half.png")
    self.canvas.eighth = PhotoImage(file="eighth.png")
    self.canvas.sixteenth = PhotoImage(file="sixteenth.png")
    self.canvas.thirty2nd = PhotoImage(file="thirty2nd.png")
    self.canvas.quarter = PhotoImage(file="quarter.png")
    self.canvas.dotted_whole = PhotoImage(file="dot_whole.png")
    self.canvas.dotted_half = PhotoImage(file="dot_half.png")
    self.canvas.dotted_eighth = PhotoImage(file="dot_eighth.png")
    self.canvas.dotted_sixteenth =
PhotoImage(file="dot sixtee-nth.png")
    self.canvas.dotted_thirty2nd =
PhotoImage(file="dot_thirty2nd.png")
    self.canvas.dotted_quarter = PhotoImage(file="dot_quarter.png")
    self.canvas.whole_rest = PhotoImage(file="whole_rest.png")
    self.canvas.half_rest = PhotoImage(file="half_rest.png")
    self.canvas.quarter_rest = PhotoImage(file="quarter_rest.png")
    self.canvas.eighth_rest = PhotoImage(file="eighth_rest.png")
    self.canvas.sixteenth_rest =
PhotoImage(file="sixteenth_rest.png")
    self.canvas.flat = - PhotoImage(file="flat.png")
    self.canvas.sharp = PhotoImage(file="sharp.png")
    self.canvas.grace = PhotoImage(file="grace_note.png")
    self.canvas.natural = PhotoImage(file="natural.png")
    self.canvas.wholes = [self.canvas.whole,
self.canvas.dotted_whole,
                                self.canvas.whole_rest,
self.canvas.half_rest]
    self.canvas.second = [self.canvas.half,
self.canvas.dotted_half,
                                self.canvas.quarter,
self.canvas.dotted_quarter]
    self.canvas..third = [self.canvas.eighth,
self.canvas.dotted_eighth,
```

```
                self.canvas.quarter_rest,
self.canvas.eighth rest]
    self.canvas.fourth = [
        self.canvas.sixteenth,
        self.canvas.dotted_sixteenth,
        self.canvas.sixteenth_rest,
        self.canvas.flat]
    self.canvas.fifth = [
        self.canvas.thirty2nd,
        self.canvas.dotted_thirty2nd,
        self.canvas.sharp,
            self.canvas.grace,
            self.canvas.natural]
    self.e1 = Entry(self.canvas, bg='white,' font=cuter_big)
    self.e2 = Entry(self.canvas, bg='white,' font=cuter_big)
    self.make_note_bank()
    # things that can't be dragged
    self.trash_pic = PhotoImage(width=50, height=68,
                                    file="trash.png")
    self.canvas.create_image(1175, 450, image=self.trash_pic)
    self.staff_pic = PhotoImage(width=800, height=400,
                                    file="staff.png")
    self.canvas.create_image(650, 250, image=self.staff_pic,
tags="staff")
    self.canvas.create_text(75, 50, text="Note Bank",
                            font=cuter, justify=CENTER)
    self.canvas.create_text(325, 420, text="Lyrics Bank",
                    font=cuter, justify=CENTER)
    self.canvas.create_rectangle(10, 30, 225, 490)
    self.canvas.create_rectangle(250, 400, 1100, 490)
    self.canvas.create_window(330, 100, window=self.e1, width=30,
                        tags="time_sig")
    self.canvas.create_window(330, 145, window=self.e2, width=30,
                        tags="time_sig")
    # used for moving images
    self._drag_data = {"x": 0, "y": 0, "item": None}
    def cont(self, event):
    """Called to progress between activities and instructions"""
    self.counter += 1
    if self.counter == 1:
        self.back_button.grid(row=2, column=0)
        print('done')
    if self.counter in range(1, 5): # instructions for composition
        self.instruction['text'] = compo_instructions[self.counter
- 1]
    if self.counter == 3:
        self.sample_img = PhotoImage(file="sample_1.png")
        self.sample = Label(image=self.sample_img, bg='white')
        self.sample.grid(row=1, column=0, columnspan=2)
    if self.counter == 4:
        self.sample.grid_forget()
    if self.counter == 5: # set up composition
        self.canvas.grid(row=1, column=0, columnspan=2,
                                    sticky=W + E, pady=10, padx=20)
        word_count = 20
```

```
    for word in compo_fillers[0]:
            self.canvas.c\overline{reate_text(400 + word_count, 455,}
text=word,
            word_count += 75
    self.instruction['text'] = compos[0]
    self.continue_button.destroy()
    self.back but\overline{ton.grid forget()}
    self.continue_button = Button(text="I am done.",
                                    bg="springgreen")
    self.continue_button.grid(row=2, column=1)
    self.continue_button.bind('<ButtonPress-1>,'
self.change_text)
    self.continue_button.bind('<ButtonRelease-1>,' self.compo)
    if self.counter == 17: # instructions for audio
    self.instruction['text'] = how_to_speak
    if self.counter == 18:
    self.instruction['text'] = how to_record
    self.back_button.grid(row=2, cōlumn=0)
    if self.counter == 19: # set up audio recordings
    self.back_button.grid_forget()
    self.instruction['text'] = words_to_record[0]
    self.continue_button.destroy()
    self.add_contīnue_button(event, "Continue", self.audio)
    self.continue_but\overline{ton.grid(row=2, column=2, padx=30)}
    # add start, stop, and erase buttons
    self.start_button = Button(text="Record",
                                    bg="red", cursor='hand2')
    self.start_button.grid(row=2, column=1, padx=20)
    self.start_button.bind('<ButtonPress-1>,' self.recording)
    self.start_button.bind('<ButtonRelease-1>,' self.record)
    self.erase_button = Button(text="Start Over",
                    bg="lightblue")
    self.erase_button.grid(row=2, column=0, padx=20, pady=20)
    self.erase_button.bind('<Button-1>,' self.erase_record)
    if self.counter == 63: # move from recordings to judgments
    log_file = open(self.directory + "\\" + "record_list.txt",
'a+')
    '\n.' join(words_to_record)
    log_file.write('\n.''join(words_to_record))
    print('they used list ' + str(list_index))
    log_file.close()
    sel\overline{f.instruction['text'] = how_to_judge}
    if self.counter == 64: # set up jūdgments
    self.continue_button.destroy()
    self.instruction['text'] = "How many syllables are in the
word '" + \
            words_to_judge[0] + "'?"
    self.setup_eñtry(event)
    if self.counter == 129: # how to end judgments
    user_answer = self.answer.get()
    log_file = open(self.directory + "\\" + self.judgment_file,
    log_file.write(
            words_to_judge[self.counter - 65] + ": " + user_answer)
    log_file.write('\n')
```

```
            log_file.close()
            sel\overline{f}.add_continue_button(
                event, "I understand, continue.", self.cont)
            self.answer_entry.destroy()
            self.instruction['text'] = intro_to_questionnaire
        if self.counter == 130: # set up questionnaire
            self.setup_entry(event)
            self.contiñue_button.destroy()
            self.instruction['text'] = question_1
    def back(self, event):
        """Used to move backward in the activity"""
        if self.counter in range(1, 5) or self.counter == 18:
            self.counter = self.counter - 1
    if self.counter == 2:
            self.sample.grid_forget()
    if self.counter == 3:
        self.sample.grid(row=1, column=0, columnspan=2)
    if self.counter in range(1, 5):
                self.instruction['text'] = compo_instructions[self.counter
- 1]
    if self.counter == 0:
        self.back_button.grid_forget()
        self.instruction['tex\overline{t'] = first}
    elif self.counter == 16:
        self.instruction['text'] = intro_to_recording
        self.back_button.grid_forget()
    elif self.counter == 17:
        self.instruction['text'] = how_to_speak
        self.back_button.grid_forget()
    elif self.counter == 60:
        self.instruction['text'] = intro_to_judgments
    def compo(self, event):
    """Used to progress through the composing part of the
activity"""
    self.counter += 1
    save_path = self.directory + "\\" + self.subject_number + \
            " " + str(self.counter - 6) + ".ps"
        self.\overline{canvas.postscript(file=save_path)}
        self.e2.delete(0, END)
        self.e1.delete(0, END)
        if self.counter in range(6, 16):
            self.continue button['text'] = "I am done."
            self.instructīon['text'] = compos[self.counter - 5]
            self.canvas.delete("lyric")
            self.canvas.delete("note")
            self.make_note_bank()
            word_coun\overline{t}=2\overline{0}
            for word in compo_fillers[self.counter - 5]:
                    self.canvas.c\overline{reate_text(280 + word_count, 455,}
text=word,
                                    font=cuter, tags="lyric")
            word_count += 80
    elif self.counter == 16: # how to end composition
        self.canvas.grid_forget()
        self.continue_bu\overline{tron['text'] = "I understand, continue."}
```

```
            self.continue button.unbind('<ButtonPress-1>')
            self.continue_button.unbind('<ButtonRelease-1>')
            self.continue_button.bind('<Button-1>,' self.cont)
            self.instruction['text'] = intro_to_recording
    def change_text(self, event):
    self.cōntinue_button['text'] = "Saving..."
    def audio(self, event):
    """Used to progress through the recording portion"""
    self.counter += 1
    if self.counter in range(20, 62):
            self.start_button.configure(text='Record,' bg='red')
            self.instrūction['text'] = words_to_record[self.counter -
19]
    if self.counter == 62: # how to end audio
            self.continue_button.destroy()
            self.add_contínue_button(
            even\overline{t, "I unde\overline{rstand, continue.", self.cont)}}\mathbf{}\mathrm{ (})
            self.instruction['text'] = intro_to_judgments
            self.start_button.destroy()
            self.erase_button.destroy()
    def recording(self, event):
    self.start_button['text'] = "Recording..."
    def record(self, event):
    """Records one word for 3 seconds"""
    self.start_button.configure(text="Record Finished.",
bg='tomato')
    self.record_count += 1
    self.p = pyaudio.PyAudio()
    self.stream = self.p.open(format=FORMAT,
                                    channels=CHANNELS,
                                    rate=RATE,
                                    input=True,
                                    frames_per_buffer=CHUNK)
    self.frames = []
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
            data = self.stream.read(CHUNK)
            self.frames.append(data)
    self.stream.stop_stream()
    self.stream.close()
    self.p.terminate()
    file_name = "SUBJECT_" + self.subject_number + "_RECORDING_" +
\
            str(self.record_count) + "_WORD_" +
words_to_record[self.counte\overline{r - 19] + ".-wav"}
    wf = wave.open(self.directory + "\\" + file_name, 'wb')
    wf.setnchannels (CHANNELS)
    wf.setsampwidth(self.p.get_sample_size(FORMAT))
    wf.setframerate(RATE)
    wf.writeframes(b'.'join(self.frames))
    wf.close()
```

```
    def erase_record(self, event):
    self.\overline{record count -= 1}
    self.start_button.configure(text='Record,' bg='red')
    def judgments(self, event):
    self.counter += 1
    self.continue_button.destroy()
    user_answer =-self.answer.get()
    log_file = open(self.directory + "\\" + self.judgment_file,
'a+')
    log_file.write(words_to_judge[self.counter - 65] + ": " +
user_answer)
    log_file.write('\n')
    log_file.close()
    self.clear_field(event)
    if self.counter in range(65, 129):
                self.instruction['text'] = "How many syllables are in the
word '" + \
                    words_to_judge[self.counter - 64] + "'"
    if self.counter == 128:
        self.answer_entry.bind('<Key-Return>,' self.cont)
    def questionnaire(self, event):
        self.counter += 1
        user_answer = self.answer.get()
        log_file = open(self.directory + "\\" + self.log_file_name,
'a+')
    log_file.write(user answer)
    log_file.write('\n')
    log_file.close()
    self.clear_field(event)
    self.answer.set('')
    if self.counter == 137:
            self.instruction['text'] = finished
            self.answer_entry.destroy()
    elif self.counter in range(130, 137):
        self.instruction['text'] = questions[self.counter - 130]
    def add_back_button(self, event):
    sel\overline{f.bac\overline{k}_button.grid(row=2, column=0)}
    def add_continue_button(self, event, texts, binder):
    self.continue_button = Button(text=texts,
                            bg="springgreen")
    self.continue_button.grid(row=2, column=1)
    self.continue_button.bind('<Button-1>,' binder)
def setup_entry(self, event):
    self.answer_entry = Entry(bg='white,' justify='center')
    self.answer_entry.grid(row=2, column=0, columnspan=2)
    self.answer = StringVar()
    self.answer.set('(Enter text here)')
    self.answer_entry['textvariable'] = self.answer
    self.answer_entry.bind('<Button-1>,' self.clear_field)
    if self.counter == 64:
```

```
                self.answer_entry.bind('<Key-Return>,' self.judgments)
    elif self.countēer == 130:
        self.answer_entry.bind('<Key-Return>,' self.questionnaire)
    def clear_field(self, event):
    self.answer.set('')
def on_note_press(self, event):
    '''Begin̄ing drag of an object'''
    self.canvas.tag_raise("note")
    # record the item and its location
    self._drag_data["item"] = self.canvas.find_closest(event.x,
                                    event.y)[0]
    self. drag data["x"] = event.x
    self._drag_data["y"] = event.y
    self.make_note_bank()
def on_lyric_press(self, event):
    # record the item and its location
    self._drag_data["item"] = self.canvas.find_closest(event.x,
event.y)[0]
    self._drag_data["x"] = event.x
    self._drag_data["y"] = event.y
    def on_note_release(self, event):
    '''End drag of an object'''
    if self._drag_data["x"] > (1100) and self._drag_data["y"] >
400:
            self.canvas.delete(self. drag data["item"])
    # reset the drag information
    self._drag_data["item"] = None
    self._drag_data["x"] = 0
    self._drag_data["y"] = 0
    def on_lyric_release(self, event):
    '''this is a separate function so that ppl can't delete
lyrics'''
    self._drag_data["item"] = None
    self._drag_data["x"] = 0
    self.__drag_data["y"] = 0
    def change_time_signature(self, event):
    time = self.el.get()
    self.canvas.grid_forget(self.canvas.find_closest(event.x,
event.y) [0])
    self.canvas.create_text(event.x, event.y, text=time,
                                    font=cuter, tags="time")
def on_note_motion(self, event):
    '''\Hand\overline{le dragging of an object'''}
    # compute how much the mouse has moved
    delta_x = event.x - self._drag_data["x"]
    delta_y = event.y - self._drag_data["y"]
    # move the object the appropriate amount
    self.canvas.move(self._drag_data["item"], delta_x, delta_y)
    # record the new position
    self._drag_data["x"] = event.x
```

```
    self._drag_data["y"] = event.y
    def make_note_bank(self):
        width_count = 40 # first row
        for im in self.canvas.wholes:
            self.canvas.create_image(width_count, 80 + 20, image=im,
                                    tag="note")
            width count += 50
    width_count = 40 # second row
    for im in self.canvas.second:
            self.canvas.create_image(width_count, 80 * 2 + 20,
image=im,
                                tag="note")
            width_count += 50
        width_count = 40
        for im in self.canvas.third:
            self.canvas.create_image(width_count, 80 * 3 + 20,
image=im,
                                    tag="note")
            width_count += 50
            width_count = 40
            for im}\mathrm{ in self.canvas.fourth:
            self.canvas.create_image(width_count, 80 * 4 + 20,
image=im,
                                    tag="note")
    width_count += 50
            width count = 40
            for im in self.canvas.fifth:
            self.canvas.create_image(width_count, 80 * 5 + 20,
image=im,
                                    tag="note")
    width_count += 40
root = Tk()
cuter = font.Font(family="Arial", size=16, weight="normal")
cuter_big = font.Font(family="Elephant", size=20, weight="normal")
root.option add("*Font", cuter)
app = App(master=root)
app.mainloop()
```


## File: instructions_list

from making_test_lines import *
from random import shuffle
import numpy as np
import gen_sub_nums
\# count $=0$
first $=$ (
"Thank you for your willingness to participate in this study. All "
"instructions will appear on screen, however you are welcome to ask
"

```
    "the researcher for clarification if something is unclear. You
will "
    "NOT be recorded by any means unless explicitly stated. You may
stop "
    "participating at any time by letting the researcher know you do
not '
    "wish to continue. You do not need to respond to any question you
do "
    "not want to. Use the navigation buttons to progress through the "
    "activity.")
# count = 1
intro_to_music = (
    "The following is an activity in "
    "which you will see a line of text and "
    "an empty musical staff. Your task is "
    "to compose a musical line to fit the "
    "given lyric. Please spend no more than "
    "5 minutes on each line. You can create"
    " your melody by dragging notes from the "
    "left onto the staff. Your composition will not be judged for its "
    "musicality or beauty. You are also welcome to use the piano
keyboard "
    "provided for you for this section if you find it helpful.")
# count = 2
splitting_words = (
    "The Text will be displayed in a box below the staff. "
    "Drag the word from the box to above/below the note to which it "
    "corresponds. You MUST use ALL of the words"
    " provided IN ORDER.")
# count = 3
example_of_split = (
    "If you would like a word to span multiple notes, "
    "place the word underneath/above the FIRST note to which it "
    "corresponds. Place nothing underneath all following notes. Here is
an"
    " example of how a word should be split between"
    " multiple notes:")
# count = 4
finished_with_compose = (
    "If you need to delete a note, drag it into the "
    " trash box located in the right-bottom corner. When you are "
    "satisfied with your melody, select the 'I am done.' button at the
"
    "bottom of the screen.")
compo_instructions = [intro_to_music, splitting_words,
example_of_split,
                                    finished_with_compose]
# count = 5-15
compo 1 = "all our dreams are done"
compo-2 = "take time to live out all you deserve"
compo_3 = "stoke the fire, I feel fine"
```

```
compo 4 = "dear little paper doll"
compo-5 = "while you conspire"
compo_6 = "you tire of being here"
compo_7 = "climb while you fall"
compo_8 = "require our hearts to heal"
compo-9 = "hire me to replace the car tire"
compo_10 = "fan the fire and fire the fanner"
compo_11 = "catch me on the line, new telephone wire now"
compos = [
    compo_1,
    compo_2,
    compo_3,
    compo_4,
    compo_5,
    compo_6,
    compo_7,
    compo_8,
    compo_9,
    compo_10,
    compo_11]
shuffle(compos)
words_from_compo = ['all,' 'our,' 'are,' 'time,' 'fire,' 'feel,'
'fine,'
    'dear,' 'doll,' 'while,' 'conspire,' 'car,' 'tire,'
'here,'
    'climb,' 'fall,' 'require,' 'heal,' 'hire,'
    'tire,' 'line,' 'wire']
compo_fillers = []
for i in compos:
    compo_fillers.append(i.split())
# composings
# count = 16
intro_to_recording = (
    "Y
    "activity. You are welcome to take a break if need be. Click "
    "continue when you are ready.")
# count = 17
how_to_speak = (
    "För the next activity, you will be asked to "
    "read a line in English and speak it into the microphone. Speak "
    "naturally as if you were talking to a friend.")
# count = 18
how_to_record = (
    "The line to speak will be at the top of the screen. Press"
    " 'Record' to begin and 'Finish' to complete the recording. When
you "
    "press finish, another line of text will appear for you to record.
If"
    " you wish to start a recording over again, press the 'Start Over'
|
```

```
    "button. Press the 'Start' button when you are ready to start your
|
    "first recording.")
intro_to_judgments = (
    "Y
    "activity. You are welcome to take a break if need be. Click "
    "'Continue' when you are ready.")
how_to_judge = (
    "In the next activity, you will see a word in English at "
    "the top of the screen. In the text box, type the number of
syllables"
    " you think are in the word, then hit 'Enter' on the computer "
    "keyboard. You will not be able to change your answers.")
# syllable judgments
"""three_syl_non = making_test_lines.listify('three_syl_non.txt')
three_sy\overline{l_target = making_test_lines.listify('three_syl_target.txt')}
two_syl_non = making_test_lines.listify('two_syl_non.txt')
two_syl_target = making_test_lines.listify('two_syl_target.txt')
one_syl_non = making_test_lines.listify('one_syl_non.txt')
one_syl_target = making_test_lines.listify('one_syl_target.txt')
all_judgments = three_syl_non + three_syl_target + two_syl_non +
two_syl_target + one_syl_non + one_syl_target
shuffle(all_judgments)
words_to_judge = np.random.choice(all_judgments,
                    10, replace=False)"""
list_a = listify('List_A.txt')
list_b = listify("List_B.txt")
list_c = listify("List_C.txt")
list_d = listify('List__D.txt')
lists = [list_a, list_b, list_c, list_d]
list_index = gen_sub_nums.which_list_to_use()
words_to_record = lists[list_index]
words_to_judge = words_to_record + words_from_compo
shuffle(words_to_judge)
# audio recordings
sents_to_record = words_to_judge
intro_to_questionnaire = (
    "Y
    "like you to answer a couple questions. If you wish to skip any "
    "question, just hit 'Enter' without typing a response.")
question_1 = "What is your native language?"
question_2 = "Do you speak any other languages? If so list them
below."
question_3 = "Where were you born (country,state/province,city)?"
```

```
question_4 = "Where were you raised (country,state/province,city)?"
question_5 = "How long have you studied music composition/theory?"
question_6 = "What do you think we are testing with this study?"
question_7 = "Any other thoughts on the experiment?"
questions = [question_1, question_2, question_3, question_4,
    question_5, question_6, question_7]
finished = "Thank you. Please let the researcher know you are
finished."
```


## File: making_test_lines

```
from random import *
```

```
def listify(filename):
    log_file = open(filename)
    list_to_cat = []
    next }\mp@subsup{}{}{-}=\mathrm{ log_file.readline()
    while next != "":
        next = next[:-1]
        list_to_cat.append(next.lower())
        next = log_file.readline()
    shuffle(list_to_cat)
    return(list_to_c`at)
```

File: gen_sub_nums

```
import os
from random import randint
from making_test_lines import *
def generate_subject_number():
    new_number = randint(0, 9999)
    bad_number = False
    with}\mathrm{ open('used_subject_numbers.txt,' 'a+') as openfileobject:
            for line in openfilēobject:
                if line == str(new_number) + '\n':
                bad_number = True
        if bad_numbēr:
            opēnfileobject.close()
            generate_subject_number()
            print('bad value')
        else:
            openfileobject.write(str(new_number) + '\n')
            openfileobject.close()
            return("{0:0=4d}".format(new_number))
def which_list_to_use():
    file \overline{= open}('\overline{l}ist_to_use.txt,' 'r+')
```

```
text = int(file.read())
file.close()
os.remove('list_to_use.txt')
count = (text + 1) % 4
new_file = open('list_to_use.txt,' 'w+')
new_file.write(str(count))
new_file.close()
retürn(count)
```


## Appendix C: Questionnaire Responses

## Questions:

1. "What is your native language?"
2. "Do you speak any other languages? If so list them below."
3. "Where were you born (country,state/province,city)?"
4. "Where were you raised (country,state/province,city)?"
5. "How long have you studied music composition/theory?"
6. "What do you think we are testing with this study?"
7. "Any other thoughts on the experiment?"

Subject 0056:

1. English
2. Very minimal Spanish
3. USA, UT, Salt Lake City
4. USA, UT, Murray
5. 4 years
6. The way we perceive sound and word structure
7. Not really, no. It was interesting

Subject 0071:

1. English
2. no
3. Utah
4. Salt Lake, Utah
5. 6
6. To see how many syllables are in the word
7. It's cool! Good luck

Subject 0197:

1. English
2. No
3. Ogden, Utah USA
4. Salt Lake City, Utah USA
5. 3 year
6. I have no idea

Subject 0221:

1. English
2. French; Italian; Spanish;

German; Russian
3. Everett, Washington, USA
4. Marysville, WA \& Idaha Falls, ID USA
5. 11 years
6. Language inflection as meausred by pitches in my compositions.
7. I'm interested to read the results. Especially your findings on the syllabification exercise.

Subject 0227:

1. English
2. Very poor Spanish
3. US, Georgia, Savannah
4. US, Georgia, Savannah and Utah, SLC
5. 6 years
6. Individual interpretation of words, in regard to musical perspective. Where emphasis is put on words, how this and the words themselves are conveyed musically, and maybe how this differs from person to person/composer to composer. Something like that.
7. Include natural accidental in note bank, hahaha. For some composers, time signature is very important, so that may be interesting to take into account as well in future tests. On a mental note, it

Subject 0290:

1. English
2. Portuguese
3. USA, Utah, Murray
4. USA, Utah, Sandy/Murray
5. 15 years
6. syllabication and intonation of English speech patterns

Subject 0370:

1. English
2. Arabic
3. Provo, Utah, USA
4. no
5. elementary and middle school
6. How people associate words with sounds
7. it was fun!

Subject 0594:

1. English
2. 
3. South Korea, Seoul
4. United States
5. 1
6. connecting syllables to musical notes
7. Pretty interesting, although it'd be easier to do it on paper and with more space than the workspace on this program gave me

Subject 1609:

1. English
2. Some Mandarin, ASL
3. United States, UT, Lindon
4. United State, UT, Lindon
5. Not really, but I've been in choir since 7th grade, and now am in Chamber Choir so I know a lot but haven't formally studied it
6. Maybe the break up of syllables. Using music you could say "oh he broke fire into two notes, which means he probably thinks it has two syllables, but then in the reading and syllable counting, he gave a different response." Cause then you have three criterea to base how people think of syllables: musically, vocally, and in their heads-ally.
7. Does the musical line have anything to do with it? Or was the music part just a ruse to figure out if I know how many syllables fire has? (Also in the syllable counting, I put .5 's on some words where I don't say them as a separate syllable but I would probably sing them that way, eg "My house is on fire." would have one syllable but when sung, "Like fire, dark fire..." each fire has two syllables.) And maybe if you make another survey thing, make the text box a little bigger because it's hard to see what I'm typing.

Subject 3714:

1. English
2. Partial Japanese
3. USA, CA, Lancaster
4. USA, CA, Thousand Oaks
5. 5-6 years
6. How language is intepreted through music.
7. Kind of fun to think about the idea behind this experiment.

Subject 3751:

1. english
2. Tongan
3. Salt Lake City, Utah
4. Utah, United States of America
5. 7 years
6. the pairing of language with music and how it functions or flows

Subject 3937:

1. English
2. Marshallese
3. USA, Utah, Salt Lake City
4. USA, Utah, Murray
5. 6 years
6. How people view certain words in that could be said with different number of syllables.
7. No

Subject 4476:

1. english
2. Hiligaynon
3. usa, st. louis missouri
4. usa, washington kennewick
5. 14 years
6. syllables
7. fun! also very interesting!

Subject 4605:

1. English
2. no
3. Canada, British Columbia, Kamloops
4. United States, Utah, Salt Lake City
5. 24 years
6. Intonation and rhythm of speech associated with culture
7. It may have been useful to have a full keyboard as well as instruction on whether to create a melody or a full staff of music

Subject 4688:

1. English, Spanish
2. Italian, French, Mandarin
3. USA, CA, San Diego
4. USA, CA, Chula Vista
5. 17 years
6. syllabic quality of "ambiguously syllabled" words
7. not that I can think of!

Subject 5531:

1. English
2. Chinese, ASL
3. American Fork, Utah, USA
4. Sandy, Utah, USA
5. 4 years
6. Where the peak of the musical phrase is versus the most significant part of the sentence
7. Not that I can think of

Subject 5991:

1. English
2. Vietnamese, Chinese
3. USA, CA/San Jose
4. Fremont
5. 6
6. something with linguistics
7. sara is the best and hope she can finish her thesis soon!!

Subject 6320:

1. Spanish \& English
2. Besides those, a little French and Italian
3. Chile
4. Salt Lake City, Utah
5. 2 years
6. People's sense of harmony and rhythm with words
7. It showed me how fast I can come up with melodies.

Subject 7723:

1. English
2. German
3. philippines
4. USA, Utah
5. 3 years
6. Syllables
7. not really

Subject 8380

1. English
2. Esperanto
3. Ogden, Utah
4. USA, Utah, Roy
5. 3 years
6. Depending on how many notes are assigned to a single word gives clues as to how many syllables they are perceived to have.
7. Very interesting, would love to see the results!

Appendix D: Compiled data from text-setting experiment

| TokenID | Subject | Word | Vowel | Coda | Count | Compo/ Judgment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0227 | line | ai | n | 2 | Juder |
| 2 | 0227 | wire | ai | r | 1 | c |
| 3 | 0227 | fire | ai | r | 1 | c |
| 4 | 0227 | feel | i | 1 | 1 | c |
| 5 | 0227 | fine | ai | n | 1 | c |
| 6 | 0227 | dear | i | r | 1 | c |
| 7 | 0227 | doll | a | 1 | 1 | c |
| 8 | 0227 | hire | ai | r | 1 | c |
| 9 | 0227 | car | a | r | 1 | c |
| 10 | 0227 | tire | ai | r | 2 | c |
| 11 | 0227 | time | ai | m | 1 | c |
| 12 | 0227 | all | a | 1 | 1 | c |
| 13 | 0227 | climb | ai | m | 1 | c |
| 14 | 0227 | while | ai | 1 | 1 | c |
| 15 | 0227 | fall | a | 1 | 1 | c |
| 16 | 0227 | require | ai | r | 2 | c |
| 17 | 0227 | our | a | r | 1 | c |
| 18 | 0227 | heal | i | 1 | 2 | c |
| 19 | 0227 | fire | ai | r | 2 | c |
| 20 | 0227 | fire | ai | r | 1 | c |
| 21 | 0227 | while | ai | 1 | 1 | c |
| 22 | 0227 | conspire | ai | r | 2 | c |
| 23 | 0227 | all | a | 1 | 1 | c |
| 24 | 0227 | our | a | r | 1 | c |
| 25 | 0227 | are | a | r | 1 | c |
| 26 | 0227 | tire | ai | r | 1 | c |
| 27 | 0227 | here | i | r | 1 | c |
| 28 | 0227 | our | a | r | 2 | j |
| 29 | 0227 | tire | ai | r | 2 | j |
| 30 | 0227 | heal | i | 1 | 1 | j |
| 31 | 0227 | all | a | 1 | 1 | j |
| 32 | 0227 | while | ai | 1 | 1 | j |
| 33 | 0227 | our | a | r | 1 | j |
| 34 | 0227 | time | ai | m | 1 | j |
| 35 | 0227 | feel | i | 1 | 1 | j |
| 36 | 0227 | fall | a | 1 | 1 | J |


| 37 | 0227 | are | a | 1 | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | 0227 | doll | a | 1 | 1 | j |
| 39 | 0227 | dear | i | r | 1 | j |
| 40 | 0227 | our | a | r | 2 | j |
| 41 | 0227 | all | a | 1 | 1 | j |
| 42 | 0227 | while | ai | 1 | 1 | j |
| 43 | 0227 | climb | ai | m | 2 | j |
| 44 | 0227 | fire | ai | r | 1 | j |
| 45 | 0227 | here | i | r | 1 | j |
| 46 | 0227 | conspire | ai | r | 3 | j |
| 47 | 0227 | hire | ai | r | 1 | j |
| 48 | 0227 | all | a | 1 | 1 | j |
| 49 | 4605 | hire | ai | r | 2 | c |
| 50 | 4605 | car | a | r | 1 | c |
| 51 | 4605 | tire | ai | r | 1 | c |
| 52 | 4605 | tire | ai | r | 1 | c |
| 53 | 4605 | here | i | r | 1 | c |
| 54 | 4605 | line | ai | n | 1 | c |
| 55 | 4605 | wire | ai | r | 2 | c |
| 56 | 4605 | fire | ai | r | 2 | c |
| 57 | 4605 | fire | ai | r | 1 | c |
| 58 | 4605 | require | ai | r | 3 | c |
| 59 | 4605 | our | a | r | 1 | c |
| 60 | 4605 | heal | i | 1 | 1 | c |
| 61 | 4605 | dear | i | r | 1 | c |
| 62 | 4605 | doll | a | 1 | 1 | c |
| 63 | 4605 | fire | ai | r | 1 | c |
| 64 | 4605 | feel | i | 1 | 1 | c |
| 65 | 4605 | fine | ai | n | 1 | c |
| 66 | 4605 | climb | ai | m | 1 | c |
| 67 | 4605 | while | ai | 1 | 2 | c |
| 68 | 4605 | fall | a | 1 | 1 | c |
| 69 | 4605 | time | ai | m | 1 | c |
| 70 | 4605 | all | a | 1 | 1 | c |
| 71 | 4605 | all | a | 1 | 1 | c |
| 72 | 4605 | our | a | r | 2 | c |
| 73 | 4605 | are | a | r | 2 | c |
| 74 | 4605 | while | ai | 1 | 1 | c |
| 75 | 4605 | conspire | ai | r | 2 | c |
| 76 | 4605 | dear | i | r | 2 | j |


| 77 | 4605 | here | i | r | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | 4605 | our | a | r | 2 | j |
| 79 | 4605 | all | a | 1 | 1 | j |
| 80 | 4605 | are | a | r | 1 | j |
| 81 | 4605 | fall | a | 1 | 1 | j |
| 82 | 4605 | hire | ai | r | 2 | j |
| 83 | 4605 | doll | a | 1 | 1 | j |
| 84 | 4605 | tire | ai | r | 2 | j |
| 85 | 4605 | heal | i | 1 | 2 | j |
| 86 | 4605 | time | ai | m | 1 | j |
| 87 | 4605 | climb | ai | m | 1 | j |
| 88 | 4605 | feel | i | 1 | 1 | j |
| 89 | 4605 | fine | ai | n | 1 | j |
| 90 | 4605 | require | ai | r | 3 | j |
| 91 | 4605 | our | a | r | 2 | j |
| 92 | 4605 | while | ai | 1 | 1 | j |
| 93 | 4605 | all | a | 1 | 1 | j |
| 94 | 4605 | all | a | 1 | 1 | j |
| 95 | 4605 | conspire | ai | r | 2 | j |
| 96 | 4605 | our | a | r | 1 | j |
| 97 | 4605 | while | ai | 1 | 1 | j |
| 98 | 4605 | fire | ai | r | 1 | j |
| 99 | 0594 | tire | ai | r | 1 | c |
| 100 | 0594 | here | i | r | 1 | c |
| 101 | 0594 | while | ai | 1 | 1 | c |
| 102 | 0594 | conspire | ai | r | 3 | c |
| 103 | 0594 | hire | ai | r | 2 | c |
| 104 | 0594 | car | a | r | 1 | c |
| 105 | 0594 | tire | ai | r | 2 | c |
| 106 | 0594 | all | a | 1 | 1 | c |
| 107 | 0594 | time | ai | m | 1 | c |
| 108 | 0594 | dear | i | r | 1 | c |
| 109 | 0594 | doll | a | 1 | 1 | c |
| 110 | 0594 | climb | ai | m | 1 | c |
| 111 | 0594 | while | ai | 1 | 1 | c |
| 112 | 0594 | fall | a | 1 | 1 | c |
| 113 | 0594 | fire | ai | r | 2 | c |
| 114 | 0594 | fire | ai | r | 2 | c |
| 115 | 0594 | line | ai | n | 1 | c |
| 116 | 0594 | wire | ai | r | 1 | c |


| 117 | 0594 | fire | ai | r | 1 | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 118 | 0594 | feel | i | l | 1 | c |
| 119 | 0594 | fine | ai | n | 1 | c |
| 120 | 0594 | all | a | l | 1 | c |
| 121 | 0594 | our | a | r | 1 | c |
| 122 | 0594 | are | a | r | 1 | c |
| 123 | 0594 | require | ai | r | 3 | c |
| 124 | 0594 | our | a | r | 1 | c |
| 125 | 0594 | heal | i | l | 1 | c |
| 126 | 0594 | fire | ai | r | 2 | j |
| 127 | 0594 | our | a | r | 1 | j |
| 128 | 0594 | hire | ai | r | 2 | j |
| 129 | 0594 | feel | i | l | 1 | j |
| 130 | 0594 | here | i | r | 1 | j |
| 131 | 0594 | fall | a | l | 1 | j |
| 132 | 0594 | conspire | ai | r | 3 | j |
| 133 | 0594 | dear | i | r | 1 | j |
| 134 | 0594 | all | a | l | 1 | j |
| 135 | 0594 | are | a | r | 1 | j |
| 136 | 0594 | tire | ai | r | 2 | j |
| 137 | 0594 | time | ai | m | 1 | j |
| 138 | 0594 | climb | ai | m | 1 | j |
| 139 | 0594 | while | ai | l | 1 | j |
| 140 | 0594 | while | ai | l | 2 | j |
| 141 | 0594 | heal | i | l | 1 | j |
| 142 | 0594 | feel | i | l | 1 | j |
| 143 | 0594 | doll | a | 1 | 1 | j |
| 144 | 0594 | all | a | l | 1 | j |
| 145 | 0594 | require | ai | r | 3 | j |
| 146 | 0594 | here | i | r | 1 | j |
| 147 | 0594 | our | a | r | 1 | j |
| 148 | 0594 | tire | ai | r | 1 | j |
| 149 | 0594 | fine | ai | n | 1 | j |
| 150 | 1609 | require | ai | r | 2 | c |
| 151 | 1609 | our | a | r | 1 | c |
| 152 | 1609 | heal | i | l | 1 | c |
| 153 | 1609 | climb | ai | m | 2 | c |
| 154 | 1609 | while | ai | l | 1 | c |
| 155 | 1609 | fall | a | l | 1 | c |
| 156 | 1609 | line | ai | n | 1 | c |
|  |  |  |  |  |  |  |


| 157 | 1609 | wire | ai | r | 1 | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 158 | 1609 | fire | ai | r | 1 | c |
| 159 | 1609 | feel | i | l | 1 | c |
| 160 | 1609 | fine | ai | n | 1 | c |
| 161 | 1609 | dear | i | r | 1 | c |
| 162 | 1609 | doll | a | l | 1 | c |
| 163 | 1609 | fire | ai | r | 1 | c |
| 164 | 1609 | fire | ai | r | 3 | c |
| 165 | 1609 | time | ai | m | 1 | c |
| 166 | 1609 | all | a | l | 1 | c |
| 167 | 1609 | all | a | l | 1 | c |
| 168 | 1609 | our | a | r | 1 | c |
| 169 | 1609 | are | a | r | 1 | c |
| 170 | 1609 | hire | ai | r | 2 | c |
| 171 | 1609 | car | a | r | 2 | c |
| 172 | 1609 | tire | ai | r | 1 | c |
| 173 | 1609 | tire | ai | r | 1 | c |
| 174 | 1609 | here | i | r | 1 | c |
| 175 | 1609 | while | ai | l | 1 | c |
| 176 | 1609 | conspire | ai | r | 2 | c |
| 177 | 1609 | our | a | r | 1 | j |
| 178 | 1609 | while | ai | l | 1 | j |
| 179 | 1609 | while | ai | l | 1 | j |
| 180 | 1609 | feel | i | l | 1 | j |
| 181 | 1609 | are | a | r | 1 | j |
| 182 | 1609 | while | ai | l | 1 | j |
| 183 | 1609 | conspire | ai | r | 2 | j |
| 184 | 1609 | hire | ai | r | 1 | j |
| 185 | 1609 | dear | i | r | 1 | j |
| 186 | 1609 | fall | a | l | 1 |  |
| 187 | 1609 | heal | i | l | 1 | j |
| 188 | 1609 | fire | ai | r | 1 | j |
| 189 | 1609 | hire | ai | r | 1 | j |
| 190 | 1609 | our | a | r | 1 | j |
| 191 | 1609 | fire | ai | r | 1 | j |
| 192 | 1609 | all | a | l | 1 | j |
| 193 | 1609 | climb | ai | m | 1 | j |
| 194 | 1609 | require | ai | r | 3 | j |
| 195 | 1609 | fine | i | n | 1 | j |
| 196 | 1609 | time | ai | m | 1 | j |
|  |  |  |  |  |  |  |


| 197 | 1609 | doll | a | 1 | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 198 | 1609 | line | ai | n | 1 | j |
| 199 | 1609 | here | i | r | 1 | j |
| 200 | 1609 | fine | ai | n | 1 | j |
| 201 | 1609 | tire | ai | r | 1 | j |
| 202 | 1609 | all | a | 1 | 1 | J |
| 203 | 0221 | fire | ai | r | 1 | c |
| 204 | 0221 | fire | ai | r | 1 | c |
| 205 | 0221 | time | ai | m | 1 | c |
| 206 | 0221 | all | a | 1 | 1 | c |
| 207 | 0221 | dear | i | r | 1 | c |
| 208 | 0221 | doll | a | 1 | 1 | c |
| 209 | 0221 | all | a | 1 | 1 | c |
| 210 | 0221 | our | a | r | 1 | c |
| 211 | 0221 | are | a | r | 1 | c |
| 212 | 0221 | while | ai | 1 | 1 | c |
| 213 | 0221 | conspire | ai | r | 2 | c |
| 214 | 0221 | hire | ai | r | 1 | c |
| 215 | 0221 | car | a | r | 1 | c |
| 216 | 0221 | tire | ai | r | 1 | c |
| 217 | 0221 | fire | ai | r | 1 | c |
| 218 | 0221 | feel | i | 1 | 1 | c |
| 219 | 0221 | fine | ai | n | 1 | c |
| 220 | 0221 | tire | ai | r | 1 | c |
| 221 | 0221 | here | i | r | 1 | c |
| 222 | 0221 | climb | ai | m | 1 | c |
| 223 | 0221 | while | ai | 1 | 1 | c |
| 224 | 0221 | fall | a | 1 | 1 | c |
| 225 | 0221 | line | ai | n | 1 | c |
| 226 | 0221 | wire | ai | r | 2 | c |
| 227 | 0221 | require | ai | r | 2 | c |
| 228 | 0221 | our | a | r | 1 | c |
| 229 | 0221 | heal | i | 1 | 1 | c |
| 230 | 0221 | feel | i | 1 | 1 | j |
| 231 | 0221 | fine | ai | n | 2 | j |
| 232 | 0221 | climb | ai | m | 1 | J |
| 233 | 0221 | fire | ai | r | 1 | j |
| 234 | 0221 | fall | a | 1 | 1 | J |
| 235 | 0221 | are | a | r | 1 | j |
| 236 | 0221 | doll | a | 1 | 1 | j |


| 237 | 0221 | while | ai | 1 | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 238 | 0221 | while | ai | 1 | 1 | j |
| 239 | 0221 | heal | i | 1 | 1 | j |
| 240 | 0221 | all | a | 1 | 1 | j |
| 241 | 0221 | all | a | 1 | 1 | j |
| 242 | 0221 | while | ai | 1 | 1 | j |
| 243 | 0221 | our | a | r | 1 | j |
| 244 | 0221 | conspire | ai | r | 2 | j |
| 245 | 0221 | fine | ai | n | 1 | j |
| 246 | 0221 | hire | ai | r | 1 | j |
| 247 | 0221 | here | i | r | 1 | j |
| 248 | 0221 | our | a | r | 1 | j |
| 249 | 0221 | tire | ai | r | 1 | j |
| 250 | 0221 | fire | ai | r | 1 | j |
| 251 | 0221 | time | ai | m | 1 | j |
| 252 | 0221 | require | ai | r | 2 | j |
| 253 | 0221 | line | ai | n | 1 | j |
| 254 | 0221 | dear | 1 | r | 1 | j |
| 255 | 0221 | hire | ai | r | 1 | j |
| 256 | 6320 | while | ai | 1 | 1 | c |
| 257 | 6320 | conspire | ai | r | 2 | c |
| 258 | 6320 | time | ai | m | 1 | c |
| 259 | 6320 | all | a | 1 | 1 | c |
| 260 | 6320 | line | ai | n | 1 | c |
| 261 | 6320 | wire | ai | r | 2 | c |
| 262 | 6320 | fire | ai | r | 1 | c |
| 263 | 6320 | fire | ai | r | 1 | c |
| 264 | 6320 | tire | ai | r | 1 | c |
| 265 | 6320 | here | i | r | 1 | c |
| 266 | 6320 | fire | ai | r | 1 | c |
| 267 | 6320 | feel | i | 1 | 1 | c |
| 268 | 6320 | fine | ai | n | 1 | c |
| 269 | 6320 | climb | ai | m | 1 | c |
| 270 | 6320 | while | ai | 1 | 1 | c |
| 271 | 6320 | fall | a | 1 | 1 | c |
| 272 | 6320 | all | a | 1 | 1 | c |
| 273 | 6320 | our | a | r | 1 | c |
| 274 | 6320 | are | a | r | 1 | c |
| 275 | 6320 | require | ai | r | 2 | c |
| 276 | 6320 | our | a | r | 1 | c |


| 277 | 6320 | heal | i | 1 | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 278 | 6320 | hire | ai | r | 1 | c |
| 279 | 6320 | car | a | r | 1 | c |
| 280 | 6320 | tire | ai | r | 2 | c |
| 281 | 6320 | dear | i | r | 1 | c |
| 282 | 6320 | doll | a | 1 | 1 | c |
| 283 | 6320 | fall | a | 1 | 1 | j |
| 284 | 6320 | are | a | r | 1 | j |
| 285 | 6320 | while | ai | 1 | 1 | j |
| 286 | 6320 | hire | ai | r | 1 | j |
| 287 | 6320 | all | a | 1 | 1 | j |
| 288 | 6320 | dear | i | r | 1 | j |
| 289 | 6320 | fire | ai | r | 1 | j |
| 290 | 6320 | doll | a | 1 | 1 | j |
| 291 | 6320 | while | ai | 1 | 1 | J |
| 292 | 6320 | climb | ai | m | 1 | j |
| 293 | 6320 | all | a | 1 | 1 | j |
| 294 | 6320 | tire | ai | r | 1 | j |
| 295 | 6320 | here | 1 | r | 1 | j |
| 296 | 6320 | tire | ai | r | 1 | j |
| 297 | 6320 | fine | ai | n | 1 | j |
| 298 | 6320 | here | 1 | r | 1 | j |
| 299 | 6320 | heal | i | 1 | 1 | j |
| 300 | 6320 | require | ai | r | 2 | J |
| 301 | 6320 | conspire | ai | r | 2 | j |
| 302 | 6320 | feel | 1 | 1 | 1 | j |
| 303 | 6320 | our | a | r | 1 | j |
| 304 | 6320 | our | a | r | 1 | j |
| 305 | 6320 | feel | 1 | 1 | 1 | j |
| 306 | 6320 | time | ai | m | 1 | j |
| 307 | 8380 | line | ai | n | 1 | c |
| 308 | 8380 | wire | ai | r | 2 | c |
| 309 | 8380 | time | ai | m | 1 | c |
| 310 | 8380 | all | a | 1 | 1 | c |
| 311 | 8380 | while | ai | 1 | 2 | c |
| 312 | 8380 | conspire | ai | r | 3 | c |
| 313 | 8380 | require | ai | r | 3 | c |
| 314 | 8380 | our | a | r | 1 | c |
| 315 | 8380 | heal | i | 1 | 2 | c |
| 316 | 8380 | hire | ai | r | 2 | c |


| 317 | 8380 | car | a | r | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 318 | 8380 | tire | ai | r | 1 | c |
| 319 | 8380 | fire | ai | r | 1 | c |
| 320 | 8380 | feel | i | 1 | 1 | c |
| 321 | 8380 | fine | ai | n | 1 | c |
| 322 | 8380 | dear | i | r | 1 | c |
| 323 | 8380 | doll | a | 1 | 1 | c |
| 324 | 8380 | fire | ai | r | 1 | c |
| 325 | 8380 | fire | ai | r | 2 | c |
| 326 | 8380 | all | a | 1 | 1 | c |
| 327 | 8380 | our | a | r | 2 | c |
| 328 | 8380 | are | a | r | 1 | c |
| 329 | 8380 | climb | ai | m | 1 | c |
| 330 | 8380 | while | ai | 1 | 1 | c |
| 331 | 8380 | fall | a | 1 | 1 | c |
| 332 | 8380 | tire | ai | r | 1 | c |
| 333 | 8380 | here | i | r | 1 | c |
| 334 | 8380 | doll | a | 1 | 1 | j |
| 335 | 8380 | time | ai | m | 1 | j |
| 336 | 8380 | our | a | r | 1 | j |
| 337 | 8380 | all | a | 1 | 1 | j |
| 338 | 8380 | feel | i | 1 | 1 | j |
| 339 | 8380 | are | a | r | 1 | j |
| 340 | 8380 | while | ai | 1 | 1 | j |
| 341 | 8380 | tire | ai | r | 1 | j |
| 342 | 8380 | our | a | r | 1 | j |
| 343 | 8380 | conspire | ai | r | 2 | j |
| 344 | 8380 | climb | ai | m | 1 | j |
| 345 | 8380 | fire | ai | r | 1 | j |
| 346 | 8380 | hire | ai | r | 1 | j |
| 347 | 8380 | all | a | 1 | 1 | j |
| 348 | 8380 | fall | a | 1 | 1 | j |
| 349 | 8380 | heal | i | 1 | 1 | j |
| 350 | 8380 | our | a | r | 1 | j |
| 351 | 8380 | while | ai | 1 | 1 | j |
| 352 | 8380 | here | i | r | 1 | j |
| 353 | 8380 | require | ai | r | 2 | j |
| 354 | 8380 | all | a | 1 | 1 | j |
| 355 | 8380 | fine | ai | n | 1 | j |
| 356 | 0056 | dear | i | r | 1 | c |


| 357 | 0056 | doll | a | 1 | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 358 | 0056 | fire | ai | r | 1 | c |
| 359 | 0056 | fire | ai | r | 2 | c |
| 360 | 0056 | hire | ai | r | 2 | c |
| 361 | 0056 | car | a | r | 1 | c |
| 362 | 0056 | tire | ai | r | 1 | c |
| 363 | 0056 | time | ai | m | 1 | c |
| 364 | 0056 | all | a | 1 | 1 | c |
| 365 | 0056 | fire | ai | r | 1 | c |
| 366 | 0056 | feel | i | 1 | 1 | c |
| 367 | 0056 | fine | ai | n | 1 | c |
| 368 | 0056 | require | ai | r | 3 | c |
| 369 | 0056 | our | a | r | 1 | c |
| 370 | 0056 | heal | i | 1 | 1 | c |
| 371 | 0056 | all | a | 1 | 1 | c |
| 372 | 0056 | our | a | r | 1 | c |
| 373 | 0056 | are | a | r | 1 | c |
| 374 | 0056 | line | ai | n | 1 | c |
| 375 | 0056 | wire | ai | r | 1 | c |
| 376 | 0056 | climb | ai | m | 1 | c |
| 377 | 0056 | while | ai | 1 | 1 | c |
| 378 | 0056 | fall | a | 1 | 1 | c |
| 379 | 0056 | tire | ai | r | 1 | c |
| 380 | 0056 | here | i | r | 1 | c |
| 381 | 0056 | while | ai | 1 | 1 | c |
| 382 | 0056 | conspire | ai | r | 2 | c |
| 383 | 0056 | fire | ai | r | 1 | j |
| 384 | 0056 | doll | a | 1 | 1 | j |
| 385 | 0056 | are | a | r | 1 | j |
| 386 | 0056 | fine | ai | n | 1 | j |
| 387 | 0056 | here | i | r | 1 | j |
| 388 | 0056 | tire | ai | r | 1 | j |
| 389 | 0056 | require | ai | r | 2 | j |
| 390 | 0056 | while | ai | 1 | 1 | j |
| 391 | 0056 | time | ai | m | 1 | j |
| 392 | 0056 | dear | i | r | 1 | j |
| 393 | 0056 | heal | i | 1 | 1 | j |
| 394 | 0056 | while | ai | 1 | 1 | j |
| 395 | 0056 | all | a | 1 | 1 | j |
| 396 | 0056 | fall | a | 1 | 1 | j |


| 397 | 0056 | all | a | 1 | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 398 | 0056 | conspire | ai | r | 2 | j |
| 399 | 0056 | feel | i | 1 | 1 | j |
| 400 | 0056 | our | a | r | 1 | j |
| 401 | 0056 | hire | ai | r | 1 | j |
| 402 | 0056 | our | a | r | 1 | j |
| 403 | 0056 | all | a | 1 | 1 | j |
| 404 | 0056 | our | a | r | 1 | j |
| 405 | 0056 | climb | ai | m | 1 | j |
| 406 | 0071 | while | ai | 1 | 1 | c |
| 407 | 0071 | conspire | ai | r | 3 | c |
| 408 | 0071 | line | ai | n | 1 | c |
| 409 | 0071 | wire | ai | r | 2 | c |
| 410 | 0071 | dear | i | r | 1 | c |
| 411 | 0071 | doll | O | 1 | 1 | c |
| 412 | 0071 | hire | ai | r | 1 | c |
| 413 | 0071 | car | a | r | 1 | c |
| 414 | 0071 | tire | ai | r | 1 | c |
| 415 | 0071 | time | ai | m | 1 | c |
| 416 | 0071 | all | a | 1 | 1 | c |
| 417 | 0071 | climb | ai | m | 1 | c |
| 418 | 0071 | while | ai | 1 | 1 | c |
| 419 | 0071 | fall | a | 1 | 1 | c |
| 420 | 0071 | all | a | 1 | 1 | c |
| 421 | 0071 | our | a | r | 2 | c |
| 422 | 0071 | are | a | r | 2 | c |
| 423 | 0071 | fire | ai | r | 2 | c |
| 424 | 0071 | fire | ai | r | 1 | c |
| 425 | 0071 | tire | ai | r | 1 | c |
| 426 | 0071 | here | i | r | 4 | c |
| 427 | 0071 | require | ai | r | 2 | c |
| 428 | 0071 | our | a | r | 2 | c |
| 429 | 0071 | heal | i | 1 | 1 | c |
| 430 | 0071 | fire | ai | r | 2 | c |
| 431 | 0071 | feel | i | 1 | 1 | c |
| 432 | 0071 | fine | ai | n | 1 | c |
| 433 | 0071 | doll | a | 1 | 1 | j |
| 434 | 0071 | time | ai | m | 1 | J |
| 435 | 0071 | climb | ai | m | 1 | J |
| 436 | 0071 | all | a | 1 | 1 | J |


| 437 | 0071 | tire | ai | r | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 438 | 0071 | our | a | r | 1 | j |
| 439 | 0071 | dear | i | r | 1 | j |
| 440 | 0071 | conspire | ai | r | 2 | j |
| 441 | 0071 | all | a | 1 | 1 | j |
| 442 | 0071 | while | ai | 1 | 1 | j |
| 443 | 0071 | fine | ai | n | 1 | j |
| 444 | 0071 | fall | a | 1 | 1 | j |
| 445 | 0071 | require | ai | r | 2 | j |
| 446 | 0071 | are | a | r | 1 | j |
| 447 | 0071 | tire | ai | r | 1 | j |
| 448 | 0071 | heal | i | 1 | 1 | j |
| 449 | 0071 | hire | ai | r | 1 | j |
| 450 | 0071 | here | i | r | 1 | j |
| 451 | 0071 | our | a | r | 1 | j |
| 452 | 0071 | feel | i | 1 | 1 | j |
| 453 | 0071 | feel | i | 1 | 1 | j |
| 454 | 0071 | while | ai | 1 | 1 | j |
| 455 | 0071 | fire | ai | r | 1 | j |
| 456 | 0071 | here | i | r | 1 | j |
| 457 | 0197 | our | a | r | 1 | c |
| 458 | 0197 | are | a | r | 1 | c |
| 459 | 0197 | all | a | 1 | 1 | c |
| 460 | 0197 | fire | ai | r | 1 | c |
| 461 | 0197 | fire | ai | r | 1 | c |
| 462 | 0197 | require | ai | r | 2 | c |
| 463 | 0197 | our | a | r | 1 | c |
| 464 | 0197 | heal | i | 1 | 1 | c |
| 465 | 0197 | here | i | r | 1 | c |
| 466 | 0197 | tire | ai | r | 1 | c |
| 467 | 0197 | all | a | 1 | 1 | c |
| 468 | 0197 | time | ai | m | 1 | c |
| 469 | 0197 | dear | i | r | 1 | c |
| 470 | 0197 | doll | a | 1 | 1 | c |
| 471 | 0197 | while | ai | 1 | 1 | c |
| 472 | 0197 | conspire | ai | r | 2 | c |
| 473 | 0197 | hire | ai | r | 1 | c |
| 474 | 0197 | car | a | r | 1 | c |
| 475 | 0197 | tire | ai | r | 1 | c |
| 476 | 0197 | climb | ai | m | 1 | c |


| 477 | 0197 | while | ai | 1 | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 478 | 0197 | fall | a | 1 | 1 | c |
| 479 | 0197 | line | ai | n | 1 | c |
| 480 | 0197 | wire | ai | r | 1 | c |
| 481 | 0197 | fire | ai | r | 1 | c |
| 482 | 0197 | feel | i | 1 | 1 | c |
| 483 | 0197 | fine | ai | n | 1 | c |
| 484 | 0197 | our | a | r | 1 | j |
| 485 | 0197 | time | ai | m | 1 | j |
| 486 | 0197 | hire | ai | r | 1 | j |
| 487 | 0197 | while | ai | 1 | 1 | j |
| 488 | 0197 | fine | ai | n | 1 | j |
| 489 | 0197 | fine | ai | n | 1 | j |
| 490 | 0197 | fire | ai | r | 1 | j |
| 491 | 0197 | while | ai | 1 | 1 | j |
| 492 | 0197 | fire | ai | r | 1 | j |
| 493 | 0197 | doll | a | 1 | 1 | j |
| 494 | 0197 | feel | 1 | 1 | 1 | j |
| 495 | 0197 | conspire | ai | r | 2 | j |
| 496 | 0197 | heal | i | 1 | 1 | j |
| 497 | 0197 | our | a | r | 1 | j |
| 498 | 0197 | all | a | 1 | 1 | j |
| 499 | 0197 | hire | ai | r | 1 | j |
| 500 | 0197 | line | ai | n | 1 | J |
| 501 | 0197 | here | 1 | r | 1 | j |
| 502 | 0197 | require | ai | r | 2 | j |
| 503 | 0197 | tire | ai | r | 2 | j |
| 504 | 0197 | all | a | 1 | 1 | j |
| 505 | 0197 | dear | i | r | 1 | J |
| 506 | 0197 | fall | a | 1 | 1 | j |
| 507 | 0197 | climb | ai | m | 1 | j |
| 508 | 0197 | while | ai | 1 | 2 | j |
| 509 | 0197 | are | a | r | 1 | j |
| 510 | 0290 | hire | ai | r | 2 | c |
| 511 | 0290 | car | a | r | 1 | c |
| 512 | 0290 | tire | ai | r | 1 | c |
| 513 | 0290 | fire | ai | r | 2 | c |
| 514 | 0290 | feel | 1 | 1 | 1 | c |
| 515 | 0290 | fine | ai | n | 1 | c |
| 516 | 0290 | while | ai | 1 | 1 | c |


| 517 | 0290 | conspire | ai | r | 3 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 518 | 0290 | fire | ai | r | 1 | c |
| 519 | 0290 | fire | ai | r | 1 | c |
| 520 | 0290 | dear | 1 | r | 1 | c |
| 521 | 0290 | doll | a | 1 | 1 | c |
| 522 | 0290 | tire | ai | r | 2 | c |
| 523 | 0290 | here | i | r | 1 | c |
| 524 | 0290 | climb | ai | m | 1 | c |
| 525 | 0290 | while | ai | 1 | 1 | c |
| 526 | 0290 | fall | a | 1 | 1 | c |
| 527 | 0290 | line | ai | n | 1 | c |
| 528 | 0290 | wire | ai | r | 2 | c |
| 529 | 0290 | time | ai | m | 1 | c |
| 530 | 0290 | all | a | 1 | 1 | c |
| 531 | 0290 | require | ai | r | 3 | c |
| 532 | 0290 | our | a | r | 1 | c |
| 533 | 0290 | heal | i | 1 | 1 | c |
| 534 | 0290 | all | a | 1 | 1 | c |
| 535 | 0290 | our | a | r | 1 | c |
| 536 | 0290 | are | a | r | 1 | c |
| 537 | 0290 | time | ai | m | 1 | j |
| 538 | 0290 | hire | ai | r | 2 | j |
| 539 | 0290 | heal | i | 1 | 1 | j |
| 540 | 0290 | while | ai | 1 | 1 | j |
| 541 | 0290 | all | a | 1 | 1 | J |
| 542 | 0290 | climb | ai | m | 1 | J |
| 543 | 0290 | tire | ai | r | 2 | j |
| 544 | 0290 | all | a | 1 | 1 | j |
| 545 | 0290 | conspire | ai | r | 3 | J |
| 546 | 0290 | our | a | r | 1 | J |
| 547 | 0290 | fire | ai | r | 2 | j |
| 548 | 0290 | fine | ai | n | 1 | J |
| 549 | 0290 | tire | ai | r | 2 | j |
| 550 | 0290 | here | i | r | 1 | j |
| 551 | 0290 | our | a | r | 1 | j |
| 552 | 0290 | feel | i | 1 | 1 | j |
| 553 | 0290 | dear | 1 | r | 1 | j |
| 554 | 0290 | are | a | r | 1 | j |
| 555 | 0290 | doll | a | 1 | 1 | j |
| 556 | 0290 | here | i | r | 1 | j |


| 557 | 0290 | require | ai | r | 3 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 558 | 0290 | feel | i | 1 | 1 | j |
| 559 | 0290 | fall | a | 1 | 1 | j |
| 560 | 0290 | while | ai | 1 | 1 | j |
| 561 | 0370 | climb | ai | m | 1 | c |
| 562 | 0370 | while | ai | 1 | 1 | c |
| 563 | 0370 | fall | a | 1 | 1 | c |
| 564 | 0370 | require | ai | r | 2 | c |
| 565 | 0370 | our | a | r | 1 | c |
| 566 | 0370 | heal | i | 1 | 1 | c |
| 567 | 0370 | line | ai | n | 2 | c |
| 568 | 0370 | wire | ai | r | 0 | c |
| 569 | 0370 | dear | i | r | 1 | c |
| 570 | 0370 | doll | a | 1 | 1 | c |
| 571 | 0370 | all | a | 1 | 1 | c |
| 572 | 0370 | our | a | r | 1 | c |
| 573 | 0370 | are | a | r | 1 | c |
| 574 | 0370 | while | ai | 1 | 1 | c |
| 575 | 0370 | conspire | ai | r | 3 | c |
| 576 | 0370 | hire | ai | r | 1 | c |
| 577 | 0370 | car | a | r | 1 | c |
| 578 | 0370 | tire | ai | r | 1 | c |
| 579 | 0370 | tire | ai | r | 1 | c |
| 580 | 0370 | here | 1 | r | 1 | c |
| 581 | 0370 | time | ai | m | 1 | c |
| 582 | 0370 | all | a | 1 | 1 | c |
| 583 | 0370 | fire | ai | r | 1 | c |
| 584 | 0370 | feel | i | 1 | 1 | c |
| 585 | 0370 | fine | ai | n | 1 | c |
| 586 | 0370 | fire | ai | r | 1 | c |
| 587 | 0370 | fire | ai | r | 1 | c |
| 588 | 0370 | all | a | 1 | 1 | j |
| 589 | 0370 | dear | i | r | 1 | j |
| 590 | 0370 | feel | i | 1 | 1 | j |
| 591 | 0370 | time | ai | m | 1 | J |
| 592 | 0370 | all | a | 1 | 1 | j |
| 593 | 0370 | our | a | r | 1 | j |
| 594 | 0370 | our | a | r | 1 | j |
| 595 | 0370 | here | 1 | r | 1 | j |
| 596 | 0370 | hire | ai | r | 2 | j |


| 597 | 0370 | tire | ai | r | 2 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 598 | 0370 | are | a | r | 1 | j |
| 599 | 0370 | our | a | r | 1 | j |
| 600 | 0370 | while | ai | 1 | 1 | j |
| 601 | 0370 | fine | ai | n | 1 | j |
| 602 | 0370 | all | a | 1 | 1 | j |
| 603 | 0370 | while | ai | 1 | 1 | j |
| 604 | 0370 | fire | ai | r | 1 | j |
| 605 | 0370 | climb | ai | m | 1 | j |
| 606 | 0370 | heal | i | 1 | 1 | j |
| 607 | 0370 | conspire | ai | r | 2 | j |
| 608 | 0370 | fall | a | 1 | 1 | j |
| 609 | 0370 | require | ai | r | 3 | j |
| 610 | 0370 | doll | a | 1 | 1 | j |
| 611 | 4476 | climb | ai | m | 1 | c |
| 612 | 4476 | while | ai | 1 | 1 | c |
| 613 | 4476 | fall | a | 1 | 1 | c |
| 614 | 4476 | dear | 1 | r | 1 | c |
| 615 | 4476 | doll | a | 1 | 1 | c |
| 616 | 4476 | while | ai | 1 | 1 | c |
| 617 | 4476 | conspire | ai | r | 4 | c |
| 618 | 4476 | all | a | 1 | 1 | c |
| 619 | 4476 | our | a | r | 1 | c |
| 620 | 4476 | are | a | r | 1 | c |
| 621 | 4476 | fire | ai | r | 3 | c |
| 622 | 4476 | feel | i | 1 | 1 | c |
| 623 | 4476 | fine | ai | n | 2 | c |
| 624 | 4476 | tire | ai | r | 2 | c |
| 625 | 4476 | here | i | r | 1 | c |
| 626 | 4476 | line | ai | n | 1 | c |
| 627 | 4476 | wire | ai | r | 1 | c |
| 628 | 4476 | time | ai | m | 1 | c |
| 629 | 4476 | all | a | 1 | 1 | c |
| 630 | 4476 | fire | ai | r | 1 | c |
| 631 | 4476 | fire | ai | r | 1 | c |
| 632 | 4476 | require | ai | r | 2 | c |
| 633 | 4476 | our | a | I | 1 | c |
| 634 | 4476 | heal | i | 1 | 1 | c |
| 635 | 4476 | hire | ai | r | 3 | c |
| 636 | 4476 | car | a | r | 1 | c |


| 637 | 4476 | tire | ai | r | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 638 | 4476 | fire | ai | r | 1 | j |
| 639 | 4476 | fire | ai | r | 1 | j |
| 640 | 4476 | climb | ai | m | 1 | j |
| 641 | 4476 | our | a | r | 1 | j |
| 642 | 4476 | dear | i | r | 1 | j |
| 643 | 4476 | heal | i | 1 | 1 | j |
| 644 | 4476 | doll | a | 1 | 1 | j |
| 645 | 4476 | doll | a | 1 | 1 | j |
| 646 | 4476 | fine | ai | n | 1 | j |
| 647 | 4476 | while | ai | 1 | 1 | j |
| 648 | 4476 | here | i | r | 1 | j |
| 649 | 4476 | all | a | 1 | 1 | j |
| 650 | 4476 | hire | ai | r | 1 | j |
| 651 | 4476 | while | ai | 1 | 1 | j |
| 652 | 4476 | all | a | 1 | 1 | j |
| 653 | 4476 | conspire | ai | r | 2 | j |
| 654 | 4476 | time | ai | m | 1 | j |
| 655 | 4476 | feel | i | 1 | 1 | j |
| 656 | 4476 | fall | a | 1 | 1 | j |
| 657 | 4476 | require | ai | r | 2 | j |
| 658 | 4476 | are | a | r | 1 | j |
| 659 | 4476 | our | a | r | 1 | j |
| 660 | 4476 | tire | ai | r | 1 | J |
| 661 | 4688 | line | ai | n | 1 | c |
| 662 | 4688 | wire | ai | r | 2 | c |
| 663 | 4688 | require | ai | r | 2 | c |
| 664 | 4688 | our | a | r | 1 | c |
| 665 | 4688 | heal | i | 1 | 1 | c |
| 666 | 4688 | fire | ai | r | 1 | c |
| 667 | 4688 | feel | i | 1 | 1 | c |
| 668 | 4688 | fine | ai | n | 1 | c |
| 669 | 4688 | all | a | 1 | 1 | c |
| 670 | 4688 | our | a | r | 1 | c |
| 671 | 4688 | are | a | r | 1 | c |
| 672 | 4688 | fire | ai | r | 2 | c |
| 673 | 4688 | fire | ai | r | 2 | c |
| 674 | 4688 | climb | ai | m | 1 | c |
| 675 | 4688 | while | ai | 1 | 1 | c |
| 676 | 4688 | fall | a | 1 | 1 | c |


| 677 | 4688 | hire | ai | r | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 678 | 4688 | car | a | r | 1 | c |
| 679 | 4688 | tire | ai | r | 1 | c |
| 680 | 4688 | while | ai | 1 | 2 | c |
| 681 | 4688 | conspire | ai | r | 3 | c |
| 682 | 4688 | dear | 1 | r | 1 | c |
| 683 | 4688 | doll | a | 1 | 1 | c |
| 684 | 4688 | time | ai | m | 1 | c |
| 685 | 4688 | all | a | 1 | 1 | c |
| 686 | 4688 | tire | ai | r | 1 | c |
| 687 | 4688 | here | i | r | 1 | c |
| 688 | 4688 | our | a | r | 2 | j |
| 689 | 4688 | all | a | 1 | 1 | j |
| 690 | 4688 | fire | ai | r | 2 | j |
| 691 | 4688 | here | i | r | 1 | j |
| 692 | 4688 | our | a | r | 2 | j |
| 693 | 4688 | while | ai | 1 | 2 | j |
| 694 | 4688 | feel | i | 1 | 1 | j |
| 695 | 4688 | require | ai | r | 3 | j |
| 696 | 4688 | tire | ai | r | 2 | j |
| 697 | 4688 | time | ai | m | 1 | j |
| 698 | 4688 | dear | i | r | 1 | j |
| 699 | 4688 | hire | ai | r | 2 | j |
| 700 | 4688 | climb | ai | m | 1 | j |
| 701 | 4688 | all | a | 1 | 1 | j |
| 702 | 4688 | conspire | ai | r | 3 | j |
| 703 | 4688 | fine | ai | n | 1 | j |
| 704 | 4688 | fall | a | 1 | 1 | j |
| 705 | 4688 | are | a | r | 1 | j |
| 706 | 4688 | fire | ai | r | 2 | j |
| 707 | 4688 | heal | i | 1 | 1 | j |
| 708 | 4688 | doll | a | 1 | 1 | j |
| 709 | 4688 | while | ai | 1 | 2 | j |
| 710 | 4688 | doll | a | 1 | 1 | j |
| 711 | 3751 | hire | ai | r | 2 | c |
| 712 | 3751 | car | a | r | 1 | c |
| 713 | 3751 | tire | ai | r | 1 | c |
| 714 | 3751 | dear | i | r | 1 | c |
| 715 | 3751 | doll | a | 1 | 1 | c |
| 716 | 3751 | all | a | 1 | 1 | c |


| 717 | 3751 | our | a | r | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 718 | 3751 | are | a | r | 1 | c |
| 719 | 3751 | require | ai | r | 2 | c |
| 720 | 3751 | our | a | r | 1 | c |
| 721 | 3751 | heal | 1 | 1 | 1 | c |
| 722 | 3751 | climb | ai | m | 2 | c |
| 723 | 3751 | while | ai | 1 | 1 | c |
| 724 | 3751 | fall | a | 1 | 1 | c |
| 725 | 3751 | fire | ai | r | 1 | c |
| 726 | 3751 | fire | ai | r | 1 | c |
| 727 | 3751 | time | ai | m | 1 | c |
| 728 | 3751 | all | a | 1 | 1 | c |
| 729 | 3751 | fire | ai | r | 1 | c |
| 730 | 3751 | feel | i | 1 | 1 | c |
| 731 | 3751 | fine | ai | n | 1 | c |
| 732 | 3751 | line | ai | n | 1 | c |
| 733 | 3751 | wire | ai | r | 1 | c |
| 734 | 3751 | tire | ai | r | 2 | c |
| 735 | 3751 | here | 1 | r | 1 | c |
| 736 | 3751 | while | ai | 1 | 1 | c |
| 737 | 3751 | conspire | ai | r | 2 | c |
| 738 | 3751 | our | a | r | 1 | j |
| 739 | 3751 | all | a | 1 | 1 | j |
| 740 | 3751 | fire | ai | r | 1 | j |
| 741 | 3751 | here | 1 | r | 1 | j |
| 742 | 3751 | dear | i | r | 1 | j |
| 743 | 3751 | time | ai | m | 1 | j |
| 744 | 3751 | while | ai | 1 | 1 | j |
| 745 | 3751 | all | a | 1 | 1 | j |
| 746 | 3751 | feel | i | 1 | 1 | j |
| 747 | 3751 | are | a | r | 1 | j |
| 748 | 3751 | climb | ai | m | 1 | j |
| 749 | 3751 | fall | a | 1 | 1 | j |
| 750 | 3751 | tire | ai | r | 1 | j |
| 751 | 3751 | doll | a | 1 | 1 | j |
| 752 | 3751 | heal | i | 1 | 1 | j |
| 753 | 3751 | here | 1 | r | 1 | j |
| 754 | 3751 | hire | ai | r | 1 | j |
| 755 | 3751 | fine | ai | n | 1 | j |
| 756 | 3751 | tire | ai | r | 1 | j |


| 757 | 3751 | our | a | r | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 758 | 3751 | conspire | ai | r | 2 | j |
| 759 | 3751 | while | ai | 1 | 1 | j |
| 760 | 3937 | time | ai | m | 1 | c |
| 761 | 3937 | all | a | 1 | 1 | c |
| 762 | 3937 | tire | ai | r | 1 | c |
| 763 | 3937 | here | i | r | 1 | c |
| 764 | 3937 | require | ai | r | 3 | c |
| 765 | 3937 | our | a | r | 1 | c |
| 766 | 3937 | heal | i | I | 2 | c |
| 767 | 3937 | fire | ai | r | 1 | c |
| 768 | 3937 | fire | ai | r | 1 | c |
| 769 | 3937 | while | ai | 1 | 1 | c |
| 770 | 3937 | conspire | ai | r | 3 | c |
| 771 | 3937 | dear | i | r | 1 | c |
| 772 | 3937 | doll | a | 1 | 1 | c |
| 773 | 3937 | fire | ai | r | 2 | c |
| 774 | 3937 | feel | i | 1 | 1 | c |
| 775 | 3937 | fine | ai | n | 1 | c |
| 776 | 3937 | hire | ai | r | 2 | c |
| 777 | 3937 | car | a | r | 1 | c |
| 778 | 3937 | tire | ai | r | 1 | c |
| 779 | 3937 | line | ai | n | 1 | c |
| 780 | 3937 | wire | ai | r | 2 | c |
| 781 | 3937 | climb | ai | m | 1 | c |
| 782 | 3937 | while | ai | 1 | 1 | c |
| 783 | 3937 | fall | a | 1 | 1 | c |
| 784 | 3937 | all | a | 1 | 1 | c |
| 785 | 3937 | our | a | r | 1 | c |
| 786 | 3937 | are | a | r | 1 | c |
| 787 | 3937 | line | ai | n | 1 | j |
| 788 | 3937 | all | a | 1 | 1 | j |
| 789 | 3937 | here | i | r | 1 | j |
| 790 | 3937 | dear | i | r | 2 | j |
| 791 | 3937 | all | a | 1 | 1 | j |
| 792 | 3937 | our | a | r | 2 | j |
| 793 | 3937 | fine | ai | n | 1 | j |
| 794 | 3937 | are | a | r | 1 | j |
| 795 | 3937 | heal | 1 | 1 | 2 | J |
| 796 | 3937 | hire | ai | r | 2 | j |


| 797 | 3937 | fine | ai | n | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 798 | 3937 | feel | i | 1 | 1 | j |
| 799 | 3937 | time | ai | m | 1 | j |
| 800 | 3937 | while | ai | 1 | 1 | j |
| 801 | 3937 | our | a | r | 2 | j |
| 802 | 3937 | tire | ai | r | 1 | j |
| 803 | 3937 | fire | ai | r | 1 | J |
| 804 | 3937 | while | ai | 1 | 2 | j |
| 805 | 3937 | while | ai | 1 | 2 | j |
| 806 | 3937 | fire | ai | r | 1 | j |
| 807 | 3937 | fall | a | 1 | 1 | j |
| 808 | 3937 | doll | a | 1 | 1 | j |
| 809 | 3937 | require | ai | r | 3 | j |
| 810 | 3937 | climb | ai | m | 1 | j |
| 811 | 3937 | conspire | ai | r | 2 | j |
| 812 | 5531 | require | ai | r | 2 | c |
| 813 | 5531 | our | a | r | 1 | c |
| 814 | 5531 | heal | i | 1 | 1 | c |
| 815 | 5531 | tire | ai | r | 1 | c |
| 816 | 5531 | here | i | r | 1 | c |
| 817 | 5531 | all | a | 1 | 2 | c |
| 818 | 5531 | our | a | r | 1 | c |
| 819 | 5531 | are | a | r | 1 | c |
| 820 | 5531 | while | ai | 1 | 1 | c |
| 821 | 5531 | conspire | ai | r | 2 | c |
| 822 | 5531 | line | ai | n | 1 | c |
| 823 | 5531 | wire | ai | r | 2 | c |
| 824 | 5531 | climb | ai | m | 6 | c |
| 825 | 5531 | while | ai | 1 | 1 | c |
| 826 | 5531 | fall | a | 1 | 1 | c |
| 827 | 5531 | fire | ai | r | 2 | c |
| 828 | 5531 | feel | i | 1 | 1 | c |
| 829 | 5531 | fine | ai | n | 2 | c |
| 830 | 5531 | hire | ai | r | 2 | c |
| 831 | 5531 | car | a | r | 1 | c |
| 832 | 5531 | tire | ai | r | 3 | c |
| 833 | 5531 | time | ai | m | 1 | c |
| 834 | 5531 | all | a | 1 | 1 | c |
| 835 | 5531 | fire | ai | r | 3 | c |
| 836 | 5531 | fire | ai | r | 1 | c |


| 837 | 5531 | dear | i | r | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 838 | 5531 | doll | a | 1 | 1 | c |
| 839 | 5531 | doll | a | 1 | 1 | j |
| 840 | 5531 | conspire | ai | r | 2 | j |
| 841 | 5531 | require | ai | r | 2 | j |
| 842 | 5531 | our | a | r | 1 | j |
| 843 | 5531 | our | a | r | 1 | J |
| 844 | 5531 | all | a | 1 | 1 | j |
| 845 | 5531 | all | a | 1 | 1 | j |
| 846 | 5531 | while | ai | 1 | 1 | j |
| 847 | 5531 | fine | ai | n | 1 | j |
| 848 | 5531 | heal | i | 1 | 1 | j |
| 849 | 5531 | climb | ai | m | 1 | j |
| 850 | 5531 | feel | i | 1 | 1 | j |
| 851 | 5531 | fall | a | 1 | 1 | j |
| 852 | 5531 | doll | a | 1 | 1 | j |
| 853 | 5531 | hire | ai | r | 1 | j |
| 854 | 5531 | fire | ai | r | 1 | j |
| 855 | 5531 | dear | i | r | 1 | j |
| 856 | 5531 | fire | i | r | 1 | j |
| 857 | 5531 | tire | ai | r | 1 | j |
| 858 | 5531 | time | ai | m | 1 | j |
| 859 | 5531 | while | ai | 1 | 1 | j |
| 860 | 5531 | here | i | r | 1 | J |
| 861 | 5531 | are | a | r | 1 | j |
| 862 | 5991 | all | a | 1 | 1 | c |
| 863 | 5991 | our | a | r | 1 | c |
| 864 | 5991 | are | a | r | 1 | c |
| 865 | 5991 | require | ai | r | 1 | c |
| 866 | 5991 | our | a | r | 1 | c |
| 867 | 5991 | heal | i | 1 | 1 | c |
| 868 | 5991 | hire | ai | r | 1 | c |
| 869 | 5991 | car | a | r | 1 | c |
| 870 | 5991 | tire | ai | r | 1 | c |
| 871 | 5991 | climb | ai | m | 1 | c |
| 872 | 5991 | while | ai | 1 | 1 | c |
| 873 | 5991 | fall | a | 1 | 1 | c |
| 874 | 5991 | dear | i | r | 1 | c |
| 875 | 5991 | doll | a | 1 | 1 | c |
| 876 | 5991 | while | ai | 1 | 1 | c |


| 877 | 5991 | conspire | ai | r | 3 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 878 | 5991 | fire | ai | r | 1 | c |
| 879 | 5991 | feel | i | 1 | 1 | c |
| 880 | 5991 | fine | ai | n | 1 | c |
| 881 | 5991 | time | ai | m | 1 | c |
| 882 | 5991 | all | a | 1 | 1 | c |
| 883 | 5991 | fire | ai | r | 1 | c |
| 884 | 5991 | fire | ai | r | 1 | c |
| 885 | 5991 | tire | ai | r | 1 | c |
| 886 | 5991 | here | i | r | 1 | c |
| 887 | 5991 | line | ai | n | 1 | c |
| 888 | 5991 | wire | ai | r | 1 | c |
| 889 | 5991 | all | a | 1 | 1 | j |
| 890 | 5991 | fine | ai | n | 1 | j |
| 891 | 5991 | here | i | r | 1 | j |
| 892 | 5991 | all | a | 1 | 1 | j |
| 893 | 5991 | heal | i | 1 | 2 | j |
| 894 | 5991 | doll | a | 1 | 1 | j |
| 895 | 5991 | doll | a | 1 | 1 | j |
| 896 | 5991 | dear | i | r | 2 | j |
| 897 | 5991 | fire | ai | r | 2 | j |
| 898 | 5991 | while | ai | 1 | 2 | j |
| 899 | 5991 | hire | ai | r | 2 | j |
| 900 | 5991 | time | ai | m | 2 | j |
| 901 | 5991 | our | a | r | 2 | j |
| 902 | 5991 | while | ai | 1 | 2 | j |
| 903 | 5991 | fall | a | 1 | 1 | j |
| 904 | 5991 | our | a | r | 1 | j |
| 905 | 5991 | require | ai | r | 3 | j |
| 906 | 5991 | fire | ai | r | 2 | j |
| 907 | 5991 | conspire | ai | r | 3 | j |
| 908 | 5991 | climb | ai | m | 1 | j |
| 909 | 5991 | tire | ai | r | 2 | J |
| 910 | 5991 | are | a | r | 1 | j |
| 911 | 5991 | feel | i | 1 | 2 | j |
| 912 | 7723 | line | ai | n | 1 | c |
| 913 | 7723 | wire | ai | r | 1 | c |
| 914 | 7723 | fire | ai | r | 2 | c |
| 915 | 7723 | fire | ai | r | 1 | c |
| 916 | 7723 | time | ai | m | 1 | c |


| 917 | 7723 | all | a | 1 | 1 | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 918 | 7723 | dear | i | r | 2 | c |
| 919 | 7723 | doll | a | 1 | 1 | c |
| 920 | 7723 | hire | ai | r | 2 | c |
| 921 | 7723 | car | a | r | 1 | c |
| 922 | 7723 | tire | ai | r | 1 | c |
| 923 | 7723 | climb | ai | m | 3 | c |
| 924 | 7723 | while | ai | 1 | 1 | c |
| 925 | 7723 | fall | a | 1 | 1 | c |
| 926 | 7723 | fire | ai | r | 1 | c |
| 927 | 7723 | feel | i | 1 | 1 | c |
| 928 | 7723 | fine | ai | n | 1 | c |
| 929 | 7723 | while | ai | 1 | 1 | c |
| 930 | 7723 | conspire | ai | r | 3 | c |
| 931 | 7723 | require | ai | r | 2 | c |
| 932 | 7723 | our | a | r | 1 | c |
| 933 | 7723 | heal | i | 1 | 1 | c |
| 934 | 7723 | tire | ai | r | 1 | c |
| 935 | 7723 | here | i | r | 1 | c |
| 936 | 7723 | all | a | 1 | 1 | c |
| 937 | 7723 | our | a | r | 1 | c |
| 938 | 7723 | are | a | r | 1 | c |
| 939 | 7723 | require | ai | r | 2 | j |
| 940 | 7723 | tire | ai | r | 2 | j |
| 941 | 7723 | fire | ai | r | 1 | j |
| 942 | 7723 | our | a | r | 1 | j |
| 943 | 7723 | climb | ai | m | 1 | j |
| 944 | 7723 | our | a | r | 1 | j |
| 945 | 7723 | all | a | 1 | 1 | J |
| 946 | 7723 | dear | i | r | 1 | j |
| 947 | 7723 | time | ai | m | 1 | j |
| 948 | 7723 | heal | i | 1 | 1 | J |
| 949 | 7723 | here | i | r | 1 | j |
| 950 | 7723 | while | ai | 1 | 1 | j |
| 951 | 7723 | our | a | r | 1 | j |
| 952 | 7723 | feel | i | 1 | 1 | J |
| 953 | 7723 | while | ai | 1 | 12 | j |
| 954 | 7723 | fall | a | 1 | 1 | j |
| 955 | 7723 | doll | a | 1 | 1 | J |
| 956 | 7723 | hire | ai | r | 2 | j |


| 957 | 7723 | all | a | 1 | 1 | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 958 | 7723 | fine | ai | n | 1 | j |
| 959 | 7723 | conspire | ai | r | 2 | j |
| 960 | 7723 | are | a | r | 1 | j |
| 961 | 7723 | all | a | 1 | 1 | j |
| 962 | 3714 | time | ai | m | 1 | c |
| 963 | 3714 | all | a | 1 | 1 | c |
| 964 | 3714 | line | ai | n | 1 | c |
| 965 | 3714 | wire | ai | r | 1 | c |
| 966 | 3714 | tire | ai | r | 2 | c |
| 967 | 3714 | here | i | r | 1 | c |
| 968 | 3714 | dear | i | r | 1 | c |
| 969 | 3714 | doll | a | 1 | 1 | c |
| 970 | 3714 | climb | ai | m | 1 | c |
| 971 | 3714 | while | ai | 1 | 1 | c |
| 972 | 3714 | fall | a | 1 | 1 | c |
| 973 | 3714 | all | a | 1 | 1 | c |
| 974 | 3714 | our | a | r | 1 | c |
| 975 | 3714 | are | a | r | 1 | c |
| 976 | 3714 | fire | ai | r | 1 | c |
| 977 | 3714 | feel | i | 1 | 1 | c |
| 978 | 3714 | fine | ai | n | 1 | c |
| 979 | 3714 | require | ai | r | 2 | c |
| 980 | 3714 | our | a | r | 1 | c |
| 981 | 3714 | heal | i | 1 | 1 | c |
| 982 | 3714 | while | ai | 1 | 2 | c |
| 983 | 3714 | conspire | ai | r | 2 | c |
| 984 | 3714 | hire | ai | r | 2 | c |
| 985 | 3714 | car | a | r | 1 | c |
| 986 | 3714 | tire | ai | r | 2 | c |
| 987 | 3714 | fire | ai | r | 1 | c |
| 988 | 3714 | fire | ai | r | 1 | c |
| 989 | 3714 | here | i | r | 1 | j |
| 990 | 3714 | fall | a | 1 | 1 | j |
| 991 | 3714 | climb | ai | m | 1 | j |
| 992 | 3714 | tire | ai | r | 2 | j |
| 993 | 3714 | time | ai | m | 1 | j |
| 994 | 3714 | all | a | 1 | 1 | j |
| 995 | 3714 | fine | ai | n | 1 | j |
| 996 | 3714 | dear | i | r | 1 | j |


| 997 | 3714 | heal | i | l | 1 | j |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 998 | 3714 | our | a | r | 2 | j |
| 999 | 3714 | feel | i | 1 | 1 | j |
| 1000 | 3714 | wire | ai | r | 2 | j |
| 1001 | 3714 | car | a | r | 1 | j |
| 1002 | 3714 | are | a | r | 1 | j |
| 1003 | 3714 | conspire | ai | r | 3 | j |
| 1004 | 3714 | while | ai | l | 2 | j |
| 1005 | 3714 | require | ai | r | 3 | j |
| 1006 | 3714 | doll | a | l | 1 | j |
| 1007 | 3714 | fire | ai | r | 2 | j |
| 1008 | 3714 | hire | ai | r | 2 | j |
| 1009 | 3714 | fire | ai | r | 2 | j |
| 1010 | 3714 | while | ai | l | 1 | j |
| 1011 | 3714 | line | ai | n | 1 | j |
| 1012 | 3714 | hire | ai | r | 1 | j |
| 1013 | 3714 | fine | ai | n | 1 | j |
| 1014 | 3714 | line | ai | n | 1 | j |
| 1015 | 3714 | tire | ai | r | 1 | j |

Name of Candidate: Sara Blalock Ng

| Birth date: | February 2, 1995 |
| :--- | :--- |
| Birth place: | Salt Lake City, Utah |
| Address: | 5330 Majestic Village Circle <br> Murray, UT, 84123-4547 |

