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Abstract

We show that unsupervised sequence-
segmentation performance can be transferred
to extremely low-resource languages by pre-
training a Masked Segmental Language Model
(Downey et al., 2021) multilingually. Further,
we show that this transfer can be achieved
by training over a collection of low-resource
languages that are typologically similar (but
phylogenetically unrelated) to the target
language. In our experiments, we transfer
from a collection of 10 Indigenous American
languages (AmericasNLP, Mager et al., 2021)
to K’iche’, a Mayan language. We compare
our multilingual model to a monolingual
(from-scratch) baseline, as well as a model
pre-trained on Quechua only. We show that
the multilingual pre-trained approach yields
consistent segmentation quality across target
dataset sizes, exceeding the monolingual
baseline in 6/10 experimental settings. Our
model yields especially strong results at small
target sizes, including a zero-shot performance
of 20.6 F1. These results have promising
implications for low-resource NLP pipelines
involving human-like linguistic units, such as
the sparse transcription framework proposed
by Bird (2020).

1 Introduction

Unsupervised sequence segmentation (at the word,
morpheme, and phone level) has long been an
area of interest in languages without whitespace-
delimited orthography (e.g. Chinese, Uchiumi
et al., 2015; Sun and Deng, 2018), morphologi-
cally complex languages without rule-based mor-
phological analyzers (Creutz and Lagus, 2002),
and automatically phone-transcribed speech data
(Goldwater et al., 2009; Lane et al., 2021), respec-
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tively. It has been particularly important for lower-
resource languages in which there is little or no
gold-standard data on which to train supervised
models (Joshi et al., 2020).

In modern neural end-to-end systems, unsu-
pervised segmentation is usually performed via
information-theoretic algorithms such as BPE (Sen-
nrich et al., 2016) and SentencePiece (Kudo and
Richardson, 2018). However, the segmentations
they produce are largely non-sensical to humans
(Park et al., 2021). The motivating tasks listed
above instead require unsupervised approaches that
correlate more closely with human judgements
of the boundaries of linguistic units. For exam-
ple, in a human-in-the-loop framework such as
the sparse transcription proposed by Bird (2020),
lexical items are automatically proposed to native
speakers for confirmation, and it is important that
these candidates be (close to) sensical, recogniz-
able pieces of language.

In this paper, we investigate the utility of re-
cent models that have been developed to con-
duct unsupervised surface morpheme segmenta-
tion as a byproduct of a language modeling objec-
tive (e.g. Kawakami et al., 2019; Downey et al.,
2021, see Section 2). The key idea is that recent
breakthroughs in crosslingual language modeling
and transfer learning (Conneau and Lample, 2019;
Artetxe et al., 2020, inter alia) can be leveraged to
facilitate transferring unsupervised segmentation
performance to a new target language, using these
types of language models.

Specifically, we investigate the effectiveness of
multilingual pre-training in a Masked Segmental
Language Model (Downey et al., 2021) when ap-
plied to a low-resource target. We pre-train our
model on the ten Indigenous languages of the 2021
AmericasNLP shared task dataset (Mager et al.,
2021), and apply it to another low-resource, In-
digenous, and morphologically complex language
of Central America: K’iche’ (quc), which at least
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phylogenetically is unrelated to the pre-training
languages (Campbell et al., 1986).

We hypothesize that multilingual pre-training
on similar, possibly contact-related languages, will
outperform both a monolingual baseline trained
from scratch and a model pre-trained on a single
language (Quechua) with the same amount of pre-
training data. We also expect that the pre-trained
models will perform increasingly better than the
monolingual baseline the smaller the target corpus
is.

Indeed, our experiments show that a pre-trained
multilingual model provides stable performance
across all dataset sizes and far exceeds the mono-
lingual baseline at low-to-medium target sizes.
We additionally show that the multilingual model
achieves a zero-shot segmentation performance of
20.6 F1 on the K’iche’ data, where the monolin-
gual baseline yields a score of zero. These results
suggest that transferring from a multilingual model
can greatly assist unsupervised segmentation in
very low-resource languages, even those that are
morphologically rich. The results also provide evi-
dence for the idea that transfer from multilingual
models works at a more moderate scale than is typ-
ical for recent crosslingual models (3.15 million
parameters for our models).

In the following section, we overview work re-
lating to unsupervised segmentation, crosslingual
pre-training, and transfer-learning (Section 2). We
then introduce the multilingual data used in our
experiments, and the additional pre-processing we
performed to prepare the data for pre-training (Sec-
tion 3). Next we provide a brief overview of the
type of Segmental Language Model used in our ex-
periments, as well as our multilingual pre-training
process (Section 4). After this, we describe our
experimental process applying the pre-trained and
from-scratch models to varying target data sizes
(Section 5). Finally, we discuss the results of our
experiments and their significance for low-resource
pipelines, both within unsupervised segmentation
and for other NLP tasks more generally (Sections
6 and 7).

2 Related Work

Work related to the present study largely falls either
into the field of (unsupervised) word segmentation,
or the field(s) of crosslingual language modeling
and transfer learning. To our knowledge, we are
the first to propose a multilingual model for unsu-

pervised word/morpheme-segmentation.

Unsupervised Segmentation Current state-of-
the-art unsupervised segmentation has largely been
achieved with Bayesian models such as Hierarchi-
cal Dirichlet Processes (Teh et al., 2006; Goldwater
et al., 2009) and Nested Pitman-Yor (Mochihashi
et al., 2009; Uchiumi et al., 2015). Adaptor Gram-
mars (Johnson and Goldwater, 2009) have been suc-
cessful as well. Models such as Morfessor (Creutz
and Lagus, 2002), which are based on Minimal De-
scription Length (Rissanen, 1989) are also widely
used for unsupervised morphology.

As Kawakami et al. (2019) note, most of these
models have weak language modeling ability, be-
ing unable to take into account much other than
the immediate local context of the sequence. An-
other line of techniques has focused on models that
are both strong language models and good for se-
quence segmentation. Many are in some way based
on Connectionist Temporal Classification (Graves
et al., 2006), and include Sleep-WAke Networks
(Wang et al., 2017), Segmental RNNs (Kong et al.,
2016), and Segmental Language Models (Sun and
Deng, 2018; Kawakami et al., 2019; Wang et al.,
2021; Downey et al., 2021). In this work, we con-
duct experiments using the Masked Segmental Lan-
guage Model of Downey et al. (2021), due to its
good performance and scalability, the latter usually
regarded as an obligatory feature of multilingual
models (Conneau et al., 2020a; Xue et al., 2021,
inter alia).

Crosslingual and Transfer Learning Crosslin-
gual modeling and training has been an especially
active area of research following the introduction
of language-general encoder-decoders in Neural
Machine Translation, offering the possibility of
zero-shot translation (i.e. translation for language
pairs not seen during training; Ha et al., 2016; John-
son et al., 2017).

The arrival of crosslingual language model pre-
training (XLM, Conneau and Lample, 2019) fur-
ther demonstrates that large models pre-trained
on multiple languages yield state-of-the-art perfor-
mance across an abundance of multilingual tasks
including zero-shot text classification (e.g. XNLI,
Conneau et al., 2018), and that pre-trained trans-
former encoders provide great initializations for
MT systems and language models in very low-
resource languages.

Since XLM, numerous studies have attempted to
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single out which components of crosslingual train-
ing contribute to transferability from one language
to another (e.g. Conneau et al., 2020b). Others have
questioned the importance of multilingual training,
and have instead proposed that even monolingual
pre-training can provide effective transfer to new
languages (Artetxe et al., 2020). Though some like
Lin et al. (2019) have tried to systematically study
which aspects of pre-training languages/corpora
enable effective transfer, in practice the choice is
often driven by availability of data and other ad-hoc
factors.

Currently, large crosslingual successors to XLM
such as XLM-R (Conneau et al., 2020a), MASS
(Song et al., 2019), mBART (Liu et al., 2020), and
mT5 (Xue et al., 2021) have achieved major suc-
cess, and are the starting point for a large portion
of multilingual NLP systems. These models all
rely on an enormous amount of parameters and
pre-training data, the bulk of which comes from
very high-resource languages. In contrast, in this
paper we assess whether multilingual pre-training
on a suite of very low-resource languages, which
combine to yield a moderate amount of unlabeled
data, can provide good transfer to similar languages
which are also very low-resource.

3 Data and Pre-processing

We draw data from three main datasets. We use the
AmericasNLP 2021 open task dataset (Mager et al.,
2021) to pre-train our multilingual models. The
multilingual dataset from Kann et al. (2018) serves
as segmentation validation data for our pre-training
process in these languages. Finally, data from Ty-
ers and Henderson (2021) is used as the training
set for our experiments transferring to K’iche’, and
Richardson and Tyers (2021) provides the valida-
tion and test data for these experiments.

AmericasNLP 2021 The AmericasNLP data
consists of train and validation files for ten low-
resource Indigenous languages of Central and
South America: Asháninka (cni), Aymara (aym),
Bribri (bzd), Guaraní (gug), Hñähñu (oto), Nahu-
atl (nah), Quechua (quy), Rarámuri (tar), Shipibo
Konibo (shp), and Wixarika (hch). For each lan-
guage, AmericasNLP also includes parallel Span-
ish sets, which we do not use. The data was orig-
inally curated for the AmericasNLP 2021 shared
task on low-resource Machine Translation. (Mager

et al., 2021).1

We augment the Asháninka and Shipibo-Konibo
training sets with additional available monolin-
gual data from Bustamante et al. (2020),2 which is
linked in the official AmericasNLP repository. We
add both the training and validation data from this
corpus to the training set of our splits.

To pre-process for a multilingual language mod-
eling setting, we first remove lines that contain urls,
copyright boilerplate, or that contain no alphabetic
characters. We also split lines that are longer than
2000 characters into sentences/clauses where ev-
ident. Because we use the Nahuatl and Wixarika
data from Kann et al. (2018) as validation data, we
remove any overlapping lines from the Americas-
NLP set. We create a combined train file as the
concatenation of the training data from each of the
ten languages, as well as a combined validation file
likewise.

Because the original ratio of Quechua training
data is so high compared to all other languages
(Figure 1), we downsample it to 215 examples, the
closest order of magnitude to the next-largest train-
ing set. A plot of the balanced (final) composition
of our AmericasNLP train and validation sets is
seen in Figure 2.

To compare the effect of multilingual and mono-
lingual pre-training, we also pre-train a model on
Quechua alone, since it has by far the most data
(Figure 1). However, the full Quechua training set
has about 50k fewer lines than our balanced Ameri-
casNLP set (Figure 2). To create a fair comparison
between multilingual and monolingual pre-training,
we additionally create a downsampled version of
the AmericasNLP set of equal size to the Quechua
data (120,145 lines). The detailed composition of
our data is available in Appendix A.

Kann et al (2018) The data from Kann et al.
(2018), originally curated for a segmentation task
on polysynthetic low-resource languages, contains
morphologically segmented sentences for Nahuatl
and Wixarika. We use these examples as valida-
tion data for segmentation quality during the pre-
training process. We clean this data in the same
manner as the AmericasNLP sets.

K’iche’ data The K’iche’ data used in our study
was curated for Tyers and Henderson (2021). The

1https://github.com/AmericasNLP/
americasnlp2021

2https://github.com/iapucp/
multilingual-data-peru
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Figure 1: Original (imbalanced) language composition
of the AmericasNLP training set

Figure 2: Final language composition of our Americas-
NLP splits after downsampling Quechua

raw (non-gold-segmented) data, used as the train-
ing set in our transfer experiments, comes from a
section of this data web-scraped by the Crúbadán
project (Scannell, 2007). This data is relatively
noisy, so we clean it by removing lines with urls
or lines where more than half of the characters are
non-alphabetic. We also remove duplicate lines.
The final data consists of 47,729 examples and is
used as our full-size training set for K’iche’. Our
experiments involve testing transfer at different re-
source levels, so we also create smaller training
sets by downsampling the original to lower orders
of magnitude.

For evaluating segmentation performance on
K’iche’, we use the segmented sentences from
Richardson and Tyers (2021),3 which were cre-
ated for a shared task on morphological segmen-

3https://github.com/ftyers/
global-classroom

tation. These segmentations were created by a
hand-crafted FST, then manually disambiguated.
Because gold-segmented sentences are so rare, we
concatenate the original train/validation/test splits
and then split them in half into final validation and
test sets.

4 Model and Pre-training

This section gives an overview of the Masked Seg-
mental Language Model (MSLM), introduced in
Downey et al. (2021), along with a description of
our pre-training procedure.

MSLMs An MSLM is a variant of a Segmen-
tal Language Model (SLM) (Sun and Deng, 2018;
Kawakami et al., 2019; Wang et al., 2021), which
takes as input a sequence of characters x and out-
puts a probability distribution for a sequence of seg-
ments y such that the concatenation of y is equiv-
alent to x: π(y) = x. An MSLM is composed of
a Segmental Transformer Encoder and an LSTM-
based Segment Decoder (Downey et al., 2021). See
Figure 3.

The MSLM training objective is based on the
prediction of masked-out spans. During a forward
pass, the encoder generates an encoding for every
position in x, for a segment up to k symbols long;
the encoding at position i− 1 corresponds to every
possible segment that starts at position i. Therefore,
the encoding approximates

p(xi:i+1, xi:i+2, ..., xi:i+k|x<i, x≥i+k)

To ensure that the encodings are generated based
only on the portions of x that are outside of the
predicted span, the encoder uses a Segmental At-
tention Mask (Downey et al., 2021) to mask out
tokens inside the segment. Figure 3 shows an ex-
ample of such a mask with k = 2.

Finally, the Segment Decoder of an SLM deter-
mines the probability of the jth character of the
segment of y that begins at index i, yij , using the
encoded context:

p(yij |yi0:j , x<i, x≥i+k) = Decoder(hij−i, y
i
j−1)

The output of the decoder is not conditional
on the determination of other segment boundaries.
The probability of y is modeled as the marginal
probability over all possible segmentations of x.
Because directly marginalizing is computationally
intractable, the marginal is computed using dy-
namic programming over a forward-pass lattice.
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The maximum-probability segmentation is deter-
mined by Viterbi decoding. The training objective
optimizes language-modeling performance, which
is measured in Bits Per Character (bpc).

Figure 3: Masked Segmental Language model (left)
and Segmental Attention Mask (right). (Figure 3 in
Downey et al., 2021)

Pre-training Procedure In our experiments, we
test the transferability of multilingual and monolin-
gual pre-trained MSLMs. The multilingual models
are trained on the AmericasNLP 2021 data (see
Section 3). Since SLMs operate on plain text, we
can train the model directly on the multilingual
concatenation of this data, and evaluate it by its lan-
guage modeling performance on the concatenated
validation data. As mentioned in Section 3, we
create two versions of the multilingual pre-trained
model: one trained on the full AmericasNLP set
(∼172k lines) and the other trained on the down-
sampled set, which is the same size as the Quechua
training set (∼120k lines). We designate these mod-
els MULTI-PTfull and MULTI-PTdown, respectively.
Our pre-trained monolingual model is trained on
the full Quechua set (QUECHUA-PT).

Each model is an MSLM with four encoder lay-
ers, hidden size 256, feedforward size 512, and
four attention heads. Character embeddings are
initialized using Word2Vec (Mikolov et al., 2013)
over the training data. The maximum segment size
is set to 10. The best model is chosen as the one
that minimizes the Bits Per Character (bpc) loss on
the validation set. For further pre-training details,
see Appendix B.

To evaluate the effect of pre-training on the seg-
mentation quality for languages within the pre-
training set, we also log MCC between the model

output and gold-segmented secondary validation
sets available in Nahuatl and Wixarika (Kann et al.,
2018, see Section 3). Figure 4 shows the un-
supervised segmentation quality for Nahuatl and
Wixarika almost monotonically increases during
pre-training (MULTI-PTfull).

Figure 4: Plot of segmentation quality for Nahuatl and
Wixarika during multilingual pre-training (measured
by Matthews Correlation Coefficient with gold segmen-
tation)

5 Experiments

We evaluate whether multilingual pre-training fa-
cilitates effective low-resource transfer learning
for unsupervised segmentation. To do this, we
pre-train SLMs on one or all of the AmericasNLP
2021 languages (Mager et al., 2021) and transfer
it to a new target language: K’iche’ (Tyers and
Henderson, 2021). K’iche’ is a morphologically
rich Mayan language with several classes of in-
flectional prefixes and suffixes (Txchajchal Batz
et al., 1996). An example sentence can be found in
Table 1, which also shows our model’s input and
target output format.

As a baseline, we train a monolingual K’iche’
model from scratch. We evaluate performance with
respect to the size of the target training set, simulat-
ing varying degrees of low-resource setting. To do
this, we downsample the K’iche’ training set to 8
smaller sizes, for 9 total: {256, 512, ... 215, 47.7k
(full)}. For each size, we both train a monolingual
baseline and fine-tune the pre-trained models we
describe in Section 4.4

4All of the data and software required to run these
experiments can be found at https://github.com/
cmdowney88/XLSLM
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Orthography kinch’aw ruk’ le nunan
Linguistic Segmentation k-in-ch’aw r-uk’ le nu-nan
Translation “I speak with my mother”
Model Input kinch’awruk’lenunan
Target Output k in ch’aw r uk’ le nu nan

Table 1: Example K’iche’ sentence from Tyers and Henderson (2021). This sentence consists of multiple words,
some of which consist of multiple morphemes. The model receives the sentence as an unsegmented stream of
characters and the target output is a sequence of morphemes (word and morpheme boundaries are treated the same,
since the former is a subtype of the latter)

Architecture and Modeling All models are
Masked Segmental Language Models (MSLMs)
with the architecture described in Section 4. The
only difference is that the baseline model is initial-
ized with a character vocabulary only covering the
particular K’iche’ training set (size-specific). The
character vocabulary of the K’iche’ data is a subset
of the AmericasNLP vocabulary, so we are able to
transfer the multilingual models without changing
the embedding and output layers. The Quechua
vocabulary is not a superset of the K’iche’, so we
add the missing characters to the Quechua model’s
embedding block before pre-training (these are
randomly initialized). The character embeddings
for the baseline are initialized using Word2Vec
(Mikolov et al., 2013) on the training set (again,
size-specific).

Evaluation Metrics SLMs can be trained in ei-
ther a fully unsupervised or “lightly” supervised
manner (Downey et al., 2021). In the former case,
only the language modeling loss (Bits Per Char-
acter, bpc) is used to pick parameters and check-
points. In the latter, the segmentation quality on
gold-segmented validation data can be considered.
Though our validation set is gold-segmented, we
pick the best parameters and checkpoints based on
bpc only, simulating the unsupervised case. How-
ever, to monitor the change in segmentation quality
during training, we also use Matthews Correlation
Coefficient (MCC). This measure frames segmen-
tation as a character-wise binary classification task
(i.e. boundary vs. no boundary), and measures
correlation with the gold segmentation.

To make our results comparable with the wider
word-segmentation literature, we use the scoring
script from the SIGHAN Segmentation Bakeoff
(Emerson, 2005) for our final segmentation F1. For
each model and target size, we choose the best
checkpoint (by bpc), apply the model to the com-
bined validation and test set, and use the SIGHAN

script to score the output.
For comparison to the Chinese Word-

Segmentation and speech literature, any whitespace
segmentation in the validation/test data is discarded
before it is fed to the model. However, SLMs
can also be trained to treat spaces like any other
character, and thus could be able to take advantage
of existing segmentation in the input. We leave
this for future work.

Parameters and Trials For our training proce-
dure (both training the baseline from scratch and
fine-tuning the pre-trained models) we tune hyper-
parameters on three of the nine dataset sizes (256,
2048, and full) and choose the optimal parameters
by bpc. For each of the other sizes, we directly
apply the chosen parameters from the tuned dataset
of the closest size (on a log scale). We tune over
five learning rates and three encoder dropout values.
As in pre-training, we set the maximum segment
length to 10. For more details on our training pro-
cedure, see Appendix B.

6 Results

The results of our K’iche’ transfer experiments at
various target sizes can be found in Table 2. In
general, the (full) pre-trained multilingual model
(MULTI-PTfull) demonstrates good performance
across dataset sizes, with the lowest segmentation
performance (20.6 F1) being in the zero-shot case
and the highest (40.7) achieved on 214 examples.
The monolingual baseline outperforms MULTI-
PTfull at the two largest target sizes, as well as
at size 4096 (achieving the best overall F1 of 44.8),
but performs very poorly under 2048 examples, and
has no zero-shot ability (unsurprisingly, since it is
a random initialization).

Interestingly, other than in the zero-shot case,
QUECHUA-PT and the comparable MULTI-PTdown

perform very similarly to each other. However, the
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zero-shot transferability of MULTI-PTdown is al-
most twice that of the model trained on Quechua
only. MULTI-PTfull exceeds both MULTI-PTdown

and QUECHUA-PT by a wide margin in every set-
ting. Finally, all models show increasing perfor-
mance until about size 4096, after which more tar-
get examples don’t provide a large increase in seg-
mentation quality.

Interpretation These results show that MULTI-
PTfull provides consistent performance across tar-
get sizes as small as 512 examples. Even for size
256, there is only a 9% (relative) drop in quality
from the next-largest size. Further, the pre-trained
model’s zero-shot performance is impressive given
the baseline is effectively 0 F1.

On the other hand, the performance of the mono-
lingual baseline at larger sizes seems to suggest
that given enough target data, it is better to train a
model devoted to the target language only. This is
consistent with previous results (Wu and Dredze,
2020; Conneau et al., 2020a). However, it should
also be noted that MULTI-PTfull never trails the
baseline by more than 5.2 F1.

One less-intuitive result is the dip in the base-
line’s performance at sizes 8192 and 214. We be-
lieve this discrepancy may be partly explainable
by sensitivity to hyperparameters in the baseline.
Though the best baseline trial at size 2048 ex-
ceeds MULTI-PTfull by a small margin, the base-
line shows large variation in performance across
the top-four hyperparameter settings at this size,
where MULTI-PTfull actually performs better on
average and much more consistently (Table 3). We
thus believe the dip in performance for the baseline
at sizes 8192 and 214 may be due to an inability to
extrapolate hyperparameters from other experimen-
tal settings.

7 Analysis and Discussion

Standing of Hypotheses Within the framework
of unsupervised segmentation, these results provide
strong evidence that relevant linguistic patterns can
be learned over a collection of low-resource lan-
guages, and then transferred to a new language
without much (or any) target training data. Further,
it is shown that the target language need not be
(phylogenetically) related to any of the pre-training
languages, even though details of morphological
structure are ultimately language-specific.

The hypothesis that multilingual pre-training
yields increasing advantage over a from-scratch

baseline at smaller target sizes is also strongly sup-
ported. This result is consistent with related work
showing this to be a key advantage of the multilin-
gual approach (Wu and Dredze, 2020).

The hypothesis that multilingual pre-training
also yields better performance than monolingual
pre-training given the same amount of data seems
to receive mixed support from our experiments.
On one hand, the comparable multilingual model
has a clear advantage over the Quechua model in
the zero-shot setting, and outperforms the latter in
5/10 settings more generally. However, because the
Quechua data lacks several frequent K’iche’ char-
acters (and these embeddings remain randomly ini-
tialized), it is unclear how much of this advantage
comes from the multilingual training per-se. In-
stead, the advantage may be due to the multilingual
model’s full coverage of the target vocabulary—
an advantage which may disappear at larger tar-
get sizes. Further analysis of this hypothesis will
require additional investigation.

Significance The above results, especially the
strong zero-shot transferability of segmentation per-
formance, suggest that the type of language model
used here learns some abstract linguistic pattern(s)
that are generalizable across languages, and even
to new ones. It is possible that these generaliza-
tions could take the form of abstract stem/affix or
word-order patterns, corresponding roughly to the
lengths and order of morphosyntactic units. Be-
cause MSLMs operate on the character level (and
in these languages orthographic characters mostly
correspond to phones), it is also possible the model
could recognize syllable structure in the data (the
ordering of consonants and vowels in human lan-
guages is relatively constrained), and learn to seg-
ment on syllable boundaries.

It is also helpful to remember that we select the
training suite and target language to have some
characteristics in common that may help facilitate
transfer. The AmericasNLP languages are almost
all morphologically rich, with many considered
polysynthetic (Mager et al., 2021), a feature that
K’iche’ shares (Suárez, 1983). Further, all of the
languages, including K’iche’, are spoken in coun-
tries where either Spanish or Portuguese is the offi-
cial language, and have very likely had close con-
tact with these Iberian languages and borrowed
lexical items. Finally, the target language family
(Mayan) has also been shown to have close his-
torical contact with the families of several of the
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Model
Target Language Segmentation F1

0 256∗ 512 1024 2048∗ 4096 8192 214 215 47,729 (full)∗

MULTI-PTfull 20.6 34.0 37.4 37.4 38.2 40.5 38.6 40.7 38.9 38.2
MULTI-PTdown 15.0 25.1 25.7 29.3 32.5 33.2 33.3 31.5 33.6 31.9
QUECHUA-PT 7.6 29.9 31.0 30.4 30.7 31.0 29.9 33.6 31.8 33.3
MONOLINGUAL 0.002 4.0 3.3 10.3 39.2∗ 44.8 29.4 39.5 44.1 43.2

Table 2: Segmentation quality on the combined validation and test set for each model, at each target training set size.
Star indicates size at which hyperparameter tuning is conducted. For tuned sizes, showing only the performance
of the model with the best bpc. *See Table 3: the best baseline trial achieved slightly better performance than
MULTI-PTfull, but the former is far more sensitive to variation due to hyperparameters at this size

Model
Target Language Segmentation F1

256∗ 2048∗ 47,729 (full)∗

MULTI-PTfull 34.2 ± 0.6 (1.8%) 38.1 ± 0.4 (1.0%) 39.4 ± 1.1 (2.8%)
MULTI-PTdown 25.7 ± 0.6 (2.3%) 30.5 ± 2.3 (7.5%) 31.7 ± 0.6 (1.9%)
QUECHUA-PT 30.1 ± 0.2 (0.7%) 31.4 ± 0.6 (1.9%) 32.7 ± 0.7 (2.1%)
MONOLINGUAL 4.2 ± 0.5 (11.9%) 36.5 ± 6.8 (18.6%) 44.7 ± 2.0 (4.5%)

Table 3: Variation of segmentation quality across the best four hyperparameter combinations for a single size (by
bpc; mean ± standard deviation (stdev ÷ mean); models ranked by mean minus stdev)

AmericasNLP set (Nahuatl, Rarámuri, Wixarika,
Hñähñu), forming a Linguistic Area or Sprachbund
(Campbell et al., 1986).

It is possible that one or several of these shared
characteristics facilitates the strong transfer shown
here, in both our multilingual and monolingual pre-
trained models. However, our current study does
not conclusively show this to be the case. Lin et al.
(2019) show that factors like linguistic similarity
and geographic contact are often not as important
for transfer success as non-linguistic features such
as the raw size of the source dataset. Indeed, the
fact that our Quechua pre-trained model performs
similarly to the comparable multilingual model (at
least at larger target sizes) suggests that the benefit
to using MULTI-PTfull could be interpreted as a
combined advantage of pre-training data size and
target vocabulary coverage.

The nuanced question of whether multilin-
gual pre-training itself enables better transfer
than monolingual pre-training requires more study.
However, taking a more pragmatic point of view,
multilingual training can be seen as a methodol-
ogy to 1) acquire more data than is available from
any one language and 2) ensure broader vocabulary
overlap with the target language. Our character-
based model is of course different from more com-
mon word- or subword-based approaches, but with

these too, attaining pre-trained embeddings that
cover a novel target language is an important step
in cross-lingual transfer (Garcia et al., 2021; Con-
neau et al., 2020a; Artetxe et al., 2020, inter alia)

Future Work We believe some future studies
would shed light on the nuances of segmentation
transfer-learning. First, pre-training either multilin-
gually or monolingually on languages that are not
linguistically similar to the target language could
help isolate the advantage given by pre-training on
any language data (vs. similar language data).

Second, we have noted that monolingual pre-
training on a language that does not have near-full
vocabulary coverage of the target language leaves
some embeddings randomly initialized, yielding
worse performance at small target sizes. Pre-
training a model on a single language that happens
to have near-complete vocabulary coverage of the
target could give a better view of whether mul-
tilingual training intrinsically yields advantages,
or whether monolingual training is disadvantaged
mainly due to this lack of vocabulary coverage.

Finally, because none of the present authors have
any training in the K’iche’ language, we are unable
to perform a linguistically-informed error analysis
of our model’s output (e.g. examining the types
of words and morphemes which are erroneously
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(un)segmented, rather than calculating an overall
precision and recall for the predicted and true mor-
pheme boundaries, as we do in this study). How-
ever, we make all of our model outputs available
in our public repository, so that future work may
provide a more nuanced analysis of the types of
errors unsupervised segmentation models are prone
to make.

8 Conclusion

This study has shown that unsupervised sequence
segmentation ability can be transferred via multi-
lingual pre-training to a novel target language with
little or no target data. The target language also
need not be from the same family as a pre-training
language for successful transfer. While training a
monolingual model from scratch on large amounts
of target data results in good segmentation quality,
our experiments show that pre-trained models, es-
pecially multilingual ones, far exceed the baseline
at small target sizes (≤1024), and seem to be much
more robust to hyperparameter variation at medium
sizes (2048, 8192, 214).

One finding that may have broader implications
is that pre-training can be conducted over a set of
low-resource languages with some typological or
geographic connection to the target, rather than
over a crosslingual suite centered around high-
resource languages like English and other Euro-
pean languages. Most modern crosslingual mod-
els have huge numbers of parameters (XLM has
570 million, mT5 has up to 13 billion, Xue et al.,
2021), and are trained on enormous amounts of
data, usually bolstered by hundreds of gigabytes
in the highest-resource languages (Conneau et al.,
2020a).

In contrast, our results suggest that effective
transfer may be possible at smaller scales, by com-
bining the data of low-resource languages and train-
ing moderately-sized, more targeted pre-trained
multilingual models (our model has 3.15 million
parameters). Of course, this study can only support
this possibility within the unsupervised segmenta-
tion task, so future work will be needed to inves-
tigate whether transfer to and from low-resource
languages can be extended to other tasks.
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A AmericasNLP Datasets

Composition The detailed composition of our
preparation of the AmericasNLP 2021 train-
ing and validation sets can be found in Tables
4 and 5 respectively. train_1.mono.cni,
train_2.mono.cni, train_1.mono.shp,
and train_2.mono.shp are the additional
monolingual sources for Asháninka and Shipibo-
Konibo obtained from Bustamante et al. (2020).
train_downsampled.quy is the version of
the Quechua training set downsampled to 215

lines to be more balanced with the other lan-
guages. train.anlp is the concatenation of
the training set of every language before Quechua
downsampling, and train_balanced.anlp
is the version after Quechua downsampling.
train_downsampled.anlp is the version of
our multilingual set downsampled to be the same
size as train.quy. MULTI-PTfull is pre-trained
on train_balanced.anlp, MULTI-PTdown

is pre-trained on train_downsampled.anlp,
and QUECHUA-PT is pre-trained on train.quy.

Citations A more detailed description of the
sources and citations for the AmericasNLP set can
be found in the original shared task paper (Mager
et al., 2021). Here, we attempt to give a brief listing
of the proper citations.

All of the validation data originates from Americ-
asNLI (Ebrahimi et al., 2021) which is a translation
of the Spanish XNLI set (Conneau et al., 2018) into
the 10 languages of the AmericasNLP 2021 open
task.

The training data for each of the languages
comes from a variety of different sources. The
Asháninka training data is sourced from Ortega
et al. (2020); Cushimariano Romano and Se-
bastián Q. (2008); Mihas (2011) and consists of
stories, educational texts, and environmental laws.
The Aymara training data consists mainly of news
text from the GlobalVoices corpus (Prokopidis
et al., 2016) as available through OPUS (Tiede-
mann, 2012). The Bribri training data is from six
sources (Feldman and Coto-Solano, 2020; Margery,
2005; Jara Murillo, 2018a; Constenla et al., 2004;
Jara Murillo and Segura, 2013; Jara Murillo, 2018b;
Flores Solórzano, 2017) ranging from dictionaries
and textbooks to story books. The Guaraní train-
ing data consists of blogs and web news sources
collected by Chiruzzo et al. (2020). The Nahuatl
training data comes from the Axolotl parallel cor-

pus (Gutierrez-Vasques et al., 2016). The Quechua
training data was created from the JW300 Cor-
pus (Agić and Vulić, 2019), including Jehovah’s
Witnesses text and dictionary entries collected by
Huarcaya Taquiri (2020). The Rarámuri training
data consists of phrases from the Rarámuri dictio-
nary (Brambila, 1976). The Shipibo-Konibo train-
ing data consists of translations of a subset of the
Tatoeba dataset (Montoya et al., 2019), translations
from bilingual education books (Galarreta et al.,
2017), and dictionary entries (Loriot et al., 1993).
The Wixarika training data consists of translated
Hans Christian Andersen fairy tales from Mager
et al. (2018).

No formal citation was given for the source of
the Hñähñu training data (see Mager et al., 2021).

B Hyperparameter Details

Pre-training The character embeddings for our
multilingual model are initialized by training
CBOW (Mikolov et al., 2013) on the Americas-
NLP training set for 32 epochs, with a window
size of 5. Special tokens like <bos> that do not
appear in the training corpus are randomly initial-
ized. These pre-trained embeddings are not frozen
during training.

We pre-train for 16,768 steps, using the Adam
optimizer (Kingma and Ba, 2015). We apply a lin-
ear warmup for 1024 steps, and a linear decay af-
terward. We sweep eight learning rates on a grid of
the interval [0.0005, 0.0009] and encoder dropout
values {12.5%, 25%}. A dropout rate of 6.25%
is applied both to the embeddings before being
passed to the encoder, and to the hidden-state and
start-symbol encodings input to the decoder (see
Downey et al., 2021). Checkpoints are taken every
128 steps.

K’iche’ Transfer Experiments Similar to the
pre-trained model, character embeddings are ini-
tialized using CBOW on the given training set for
32 epochs with a window size of 5, and these em-
beddings are not frozen during training.

All models are trained using the Adam optimizer
(Kingma and Ba, 2015) for 8192 steps on all but
the two smallest sizes, which are trained for 4096
steps. A linear warmup is used for the first 1024
steps (512 for the smallest sets), followed by linear
decay. We set the maximum segment length to
10. A dropout rate of 6.25% is applied to the input
embeddings, plus h and the start-symbol for the
decoder. Checkpoints are taken every 64 steps for
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sizes 256 and 512, and every 128 steps for every
other size.

For all training set sizes, we sweep 5 learning
rates and 3 encoder dropout rates, but the swept
set is different for each. For size 256, we sweep
learning rates {5e-5, 7.5e-5, 1e-4, 2.5e-4, 5e-4}
and (encoder) dropout rates {12.5%, 25%, 50%}.
For size 2048, we sweep learning rates {1e-4, 2.5e-
4, 5e-4, 7.5e-4, 1e-3} and dropouts {12.5%, 25%,
50%}. For the full training size, we sweep learn-
ing rates {1e-4, 2.5e-4, 5e-4, 7.5e-4, 1e-3} and
dropouts {6.5%, 12.5%, 25%}.
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